feat: task manager endpoint, updated documentation

This commit is contained in:
2025-08-22 15:47:08 +02:00
parent d7d307e3ce
commit 30a5f8b8cb
14 changed files with 2550 additions and 551 deletions

358
docs/Architecture.md Normal file
View File

@@ -0,0 +1,358 @@
# SPORE Architecture & Implementation
## System Overview
SPORE (SProcket ORchestration Engine) is a cluster engine for ESP8266 microcontrollers that provides automatic node discovery, health monitoring, and over-the-air updates in a distributed network environment.
## Core Components
The system architecture consists of several key components working together:
### Network Manager
- **WiFi Connection Handling**: Automatic WiFi STA/AP configuration
- **Hostname Configuration**: MAC-based hostname generation
- **Fallback Management**: Automatic access point creation if WiFi connection fails
### Cluster Manager
- **Node Discovery**: UDP-based automatic node detection
- **Member List Management**: Dynamic cluster membership tracking
- **Health Monitoring**: Continuous node status checking
- **Resource Tracking**: Monitor node resources and capabilities
### API Server
- **HTTP API Server**: RESTful API for cluster management
- **Dynamic Endpoint Registration**: Automatic API endpoint discovery
- **Service Registry**: Track available services across the cluster
### Task Scheduler
- **Cooperative Multitasking**: Background task management system
- **Task Lifecycle Management**: Automatic task execution and monitoring
- **Resource Optimization**: Efficient task scheduling and execution
### Node Context
- **Central Context**: Shared resources and configuration
- **Event System**: Local and cluster-wide event publishing/subscription
- **Resource Management**: Centralized resource allocation and monitoring
## Auto Discovery Protocol
The cluster uses a UDP-based discovery protocol for automatic node detection:
### Discovery Process
1. **Discovery Broadcast**: Nodes periodically send UDP packets on port 4210
2. **Response Handling**: Nodes respond with their hostname and IP address
3. **Member Management**: Discovered nodes are automatically added to the cluster
4. **Health Monitoring**: Continuous status checking via HTTP API calls
### Protocol Details
- **UDP Port**: 4210 (configurable)
- **Discovery Message**: `CLUSTER_DISCOVERY`
- **Response Message**: `CLUSTER_RESPONSE`
- **Broadcast Address**: 255.255.255.255
- **Discovery Interval**: 1 second (configurable)
- **Listen Interval**: 100ms (configurable)
### Node Status Categories
Nodes are automatically categorized by their activity:
- **ACTIVE**: Responding within 10 seconds
- **INACTIVE**: No response for 10-60 seconds
- **DEAD**: No response for over 60 seconds
## Task Scheduling System
The system runs several background tasks at different intervals:
### Core System Tasks
| Task | Interval | Purpose |
|------|----------|---------|
| **Discovery Send** | 1 second | Send UDP discovery packets |
| **Discovery Listen** | 100ms | Listen for discovery responses |
| **Status Updates** | 1 second | Monitor cluster member health |
| **Heartbeat** | 2 seconds | Maintain cluster connectivity |
| **Member Info** | 10 seconds | Update detailed node information |
| **Debug Output** | 5 seconds | Print cluster status |
### Task Management Features
- **Dynamic Intervals**: Change execution frequency on-the-fly
- **Runtime Control**: Enable/disable tasks without restart
- **Status Monitoring**: Real-time task health tracking
- **Resource Integration**: View task status with system resources
## Event System
The `NodeContext` provides an event-driven architecture for system-wide communication:
### Event Subscription
```cpp
// Subscribe to events
ctx.on("node_discovered", [](void* data) {
NodeInfo* node = static_cast<NodeInfo*>(data);
// Handle new node discovery
});
ctx.on("cluster_updated", [](void* data) {
// Handle cluster membership changes
});
```
### Event Publishing
```cpp
// Publish events
ctx.fire("node_discovered", &newNode);
ctx.fire("cluster_updated", &clusterData);
```
### Available Events
- **`node_discovered`**: New node added to cluster
- **`cluster_updated`**: Cluster membership changed
- **`resource_update`**: Node resources updated
- **`health_check`**: Node health status changed
## Resource Monitoring
Each node tracks comprehensive system resources:
### System Resources
- **Free Heap Memory**: Available RAM in bytes
- **Chip ID**: Unique ESP8266 identifier
- **SDK Version**: ESP8266 firmware version
- **CPU Frequency**: Operating frequency in MHz
- **Flash Chip Size**: Total flash storage in bytes
### API Endpoint Registry
- **Dynamic Discovery**: Automatically detect available endpoints
- **Method Information**: HTTP method (GET, POST, etc.)
- **Service Catalog**: Complete service registry across cluster
### Health Metrics
- **Response Time**: API response latency
- **Uptime**: System uptime in milliseconds
- **Connection Status**: Network connectivity health
- **Resource Utilization**: Memory and CPU usage
## WiFi Fallback System
The system includes automatic WiFi fallback for robust operation:
### Fallback Process
1. **Primary Connection**: Attempts to connect to configured WiFi network
2. **Connection Failure**: If connection fails, creates an access point
3. **Hostname Generation**: Automatically generates hostname from MAC address
4. **Service Continuity**: Maintains cluster functionality in fallback mode
### Configuration
- **SSID Format**: `SPORE_<MAC_LAST_4>`
- **Password**: Configurable fallback password
- **IP Range**: 192.168.4.x subnet
- **Gateway**: 192.168.4.1
## Cluster Topology
### Node Types
- **Master Node**: Primary cluster coordinator (if applicable)
- **Worker Nodes**: Standard cluster members
- **Edge Nodes**: Network edge devices
### Network Architecture
- **Mesh-like Structure**: Nodes can communicate with each other
- **Dynamic Routing**: Automatic path discovery between nodes
- **Load Distribution**: Tasks distributed across available nodes
- **Fault Tolerance**: Automatic failover and recovery
## Data Flow
### Discovery Flow
```
Node A → UDP Broadcast → Node B
Node B → HTTP Response → Node A
Node A → Add to Cluster → Update Member List
```
### Health Monitoring Flow
```
Cluster Manager → HTTP Request → Node Status
Node → JSON Response → Resource Information
Cluster Manager → Update Health → Fire Events
```
### Task Execution Flow
```
Task Scheduler → Check Intervals → Execute Tasks
Task → Update Status → API Server
API Server → JSON Response → Client
```
## Performance Characteristics
### Memory Usage
- **Base System**: ~15-20KB RAM
- **Per Task**: ~100-200 bytes per task
- **Cluster Members**: ~50-100 bytes per member
- **API Endpoints**: ~20-30 bytes per endpoint
### Network Overhead
- **Discovery Packets**: 64 bytes every 1 second
- **Health Checks**: ~200-500 bytes every 1 second
- **Status Updates**: ~1-2KB per node
- **API Responses**: Varies by endpoint (typically 100B-5KB)
### Processing Overhead
- **Task Execution**: Minimal overhead per task
- **Event Processing**: Fast event dispatch
- **JSON Parsing**: Efficient ArduinoJson usage
- **Network I/O**: Asynchronous operations
## Security Considerations
### Current Implementation
- **Network Access**: Local network only (no internet exposure)
- **Authentication**: None currently implemented
- **Data Validation**: Basic input validation
- **Resource Limits**: Memory and processing constraints
### Future Enhancements
- **TLS/SSL**: Encrypted communications
- **API Keys**: Authentication for API access
- **Access Control**: Role-based permissions
- **Audit Logging**: Security event tracking
## Scalability
### Cluster Size Limits
- **Theoretical**: Up to 255 nodes (IP subnet limit)
- **Practical**: 20-50 nodes for optimal performance
- **Memory Constraint**: ~8KB available for member tracking
- **Network Constraint**: UDP packet size limits
### Performance Scaling
- **Linear Scaling**: Most operations scale linearly with node count
- **Discovery Overhead**: Increases with cluster size
- **Health Monitoring**: Parallel HTTP requests
- **Task Management**: Independent per-node execution
## Configuration Management
### Environment Variables
```bash
# API node IP for cluster management
export API_NODE=192.168.1.100
# Cluster configuration
export CLUSTER_PORT=4210
export DISCOVERY_INTERVAL=1000
export HEALTH_CHECK_INTERVAL=1000
```
### PlatformIO Configuration
The project uses PlatformIO with the following configuration:
- **Framework**: Arduino
- **Board**: ESP-01 with 1MB flash
- **Upload Speed**: 115200 baud
- **Flash Mode**: DOUT (required for ESP-01S)
### Dependencies
The project requires the following libraries:
- `esp32async/ESPAsyncWebServer@^3.8.0` - HTTP API server
- `bblanchon/ArduinoJson@^7.4.2` - JSON processing
- `arkhipenko/TaskScheduler@^3.8.5` - Cooperative multitasking
## Development Workflow
### Building
Build the firmware for specific chip:
```bash
./ctl.sh build target esp01_1m
```
### Flashing
Flash firmware to a connected device:
```bash
./ctl.sh flash target esp01_1m
```
### Over-The-Air Updates
Update a specific node:
```bash
./ctl.sh ota update 192.168.1.100 esp01_1m
```
Update all nodes in the cluster:
```bash
./ctl.sh ota all esp01_1m
```
### Cluster Management
View cluster members:
```bash
./ctl.sh cluster members
```
## Troubleshooting
### Common Issues
1. **Discovery Failures**: Check UDP port 4210 is not blocked
2. **WiFi Connection**: Verify SSID/password in Config.cpp
3. **OTA Updates**: Ensure sufficient flash space (1MB minimum)
4. **Cluster Split**: Check network connectivity between nodes
### Debug Output
Enable serial monitoring to see cluster activity:
```bash
pio device monitor
```
### Performance Monitoring
- **Memory Usage**: Monitor free heap with `/api/node/status`
- **Task Health**: Check task status with `/api/tasks/status`
- **Cluster Health**: Monitor member status with `/api/cluster/members`
- **Network Latency**: Track response times in cluster data
## Related Documentation
- **[Task Management](./TaskManagement.md)** - Background task system
- **[API Reference](./API.md)** - REST API documentation
- **[TaskManager API](./TaskManager.md)** - TaskManager class reference
- **[OpenAPI Specification](../api/)** - Machine-readable API specification