Compare commits

...

9 Commits

Author SHA1 Message Date
025ac7b810 fix: endpoints result 2025-09-23 21:29:18 +02:00
a9f56c1279 fix: tasks endpoint response 2025-09-23 21:03:13 +02:00
594b5e3af6 feat: implement complete JSON serialization system with response classes
- Add abstract JsonSerializable base class with toJson/fromJson methods
- Create comprehensive response classes for complete JSON document handling:
  * ClusterMembersResponse for cluster member data
  * TaskStatusResponse and TaskControlResponse for task operations
  * NodeStatusResponse, NodeEndpointsResponse, NodeOperationResponse for node data
- Implement concrete serializable classes for all data types:
  * NodeInfoSerializable, TaskInfoSerializable, SystemInfoSerializable
  * TaskSummarySerializable, EndpointInfoSerializable
- Refactor all service classes to use new serialization system
- Reduce service method complexity from 20-30 lines to 2-3 lines
- Eliminate manual JsonDocument creation and field mapping
- Ensure type safety and compile-time validation
- Maintain backward compatibility while improving maintainability

Breaking change: Service classes now use response objects instead of manual JSON creation
2025-09-22 21:55:25 +02:00
c11652c123 feat: optimize neopattern example 2025-09-20 22:05:52 +02:00
51d4d4bc94 feat: remove hostname from labels 2025-09-20 15:04:11 +02:00
e95eb09a11 feat: introduce new param type numberRange 2025-09-19 21:49:59 +02:00
4727405be1 feat: rewrite NeoPattern example 2025-09-19 21:02:26 +02:00
93f09c3bb4 feat: unified monitoring service 2025-09-16 20:09:48 +02:00
83d87159fc Merge pull request 'feature/relay-example-ui' (#6) from feature/relay-example-ui into main
Reviewed-on: #6
2025-09-16 18:14:58 +02:00
38 changed files with 2717 additions and 1393 deletions

View File

@@ -1,470 +1,376 @@
/** #include "NeoPattern.h"
* Original NeoPattern code by Bill Earl
* https://learn.adafruit.com/multi-tasking-the-arduino-part-3/overview
*
* TODO
* - cleanup the mess
* - fnc table for patterns to replace switch case
*
* Custom modifications by 0x1d:
* - default OnComplete callback that sets pattern to reverse
* - separate animation update from timer; Update now updates directly, UpdateScheduled uses timer
*/
#ifndef __NeoPattern_INCLUDED__
#define __NeoPattern_INCLUDED__
#include <Adafruit_NeoPixel.h> // Constructor - calls base-class constructor to initialize strip
NeoPattern::NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(int))
using namespace std; : Adafruit_NeoPixel(pixels, pin, type)
// Pattern types supported:
enum pattern
{ {
NONE = 0, frameBuffer = (uint8_t *)malloc(768);
RAINBOW_CYCLE = 1, OnComplete = callback;
THEATER_CHASE = 2, TotalSteps = numPixels();
COLOR_WIPE = 3, begin();
SCANNER = 4, }
FADE = 5,
FIRE = 6 NeoPattern::NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type)
}; : Adafruit_NeoPixel(pixels, pin, type)
// Patern directions supported:
enum direction
{ {
FORWARD, frameBuffer = (uint8_t *)malloc(768);
REVERSE TotalSteps = numPixels();
}; begin();
}
// NeoPattern Class - derived from the Adafruit_NeoPixel class NeoPattern::~NeoPattern() {
class NeoPattern : public Adafruit_NeoPixel if (frameBuffer) {
free(frameBuffer);
}
}
void NeoPattern::handleStream(uint8_t *data, size_t len)
{ {
public: //const uint16_t *data16 = (uint16_t *)data;
// Member Variables: bufferSize = len;
pattern ActivePattern = RAINBOW_CYCLE; // which pattern is running memcpy(frameBuffer, data, len);
direction Direction = FORWARD; // direction to run the pattern }
unsigned long Interval = 150; // milliseconds between updates void NeoPattern::drawFrameBuffer(int w, uint8_t *frame, int length)
unsigned long lastUpdate = 0; // last update of position {
for (int i = 0; i < length; i++)
uint32_t Color1 = 0;
uint32_t Color2 = 0; // What colors are in use
uint16_t TotalSteps = 32; // total number of steps in the pattern
uint16_t Index; // current step within the pattern
uint16_t completed = 0;
// FIXME return current NeoPatternState
void (*OnComplete)(int); // Callback on completion of pattern
uint8_t *frameBuffer;
int bufferSize = 0;
// Constructor - calls base-class constructor to initialize strip
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(int))
: Adafruit_NeoPixel(pixels, pin, type)
{ {
frameBuffer = (uint8_t *)malloc(768); uint8_t r = frame[i];
OnComplete = callback; uint8_t g = frame[i + 1];
TotalSteps = numPixels(); uint8_t b = frame[i + 2];
begin(); setPixelColor(i, r, g, b);
} }
}
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type) void NeoPattern::onCompleteDefault(int pixels)
: Adafruit_NeoPixel(pixels, pin, type) {
//Serial.println("onCompleteDefault");
// FIXME no specific code
if (ActivePattern == THEATER_CHASE)
{ {
frameBuffer = (uint8_t *)malloc(768); return;
TotalSteps = numPixels();
begin();
} }
Reverse();
//Serial.println("pattern completed");
}
void handleStream(uint8_t *data, size_t len) // Increment the Index and reset at the end
void NeoPattern::Increment()
{
completed = 0;
if (Direction == FORWARD)
{ {
//const uint16_t *data16 = (uint16_t *)data; Index++;
bufferSize = len; if (Index >= TotalSteps)
memcpy(frameBuffer, data, len);
}
void drawFrameBuffer(int w, uint8_t *frame, int length)
{
for (int i = 0; i < length; i++)
{ {
uint8_t r = frame[i];
uint8_t g = frame[i + 1];
uint8_t b = frame[i + 2];
setPixelColor(i, r, g, b);
}
}
void onCompleteDefault(int pixels)
{
//Serial.println("onCompleteDefault");
// FIXME no specific code
if (ActivePattern == THEATER_CHASE)
{
return;
}
Reverse();
//Serial.println("pattern completed");
}
// Update the pattern
void Update()
{
switch (ActivePattern)
{
case RAINBOW_CYCLE:
RainbowCycleUpdate();
break;
case THEATER_CHASE:
TheaterChaseUpdate();
break;
case COLOR_WIPE:
ColorWipeUpdate();
break;
case SCANNER:
ScannerUpdate();
break;
case FADE:
FadeUpdate();
break;
case FIRE:
Fire(50, 120);
break;
default:
if (bufferSize > 0)
{
drawFrameBuffer(TotalSteps, frameBuffer, bufferSize);
}
break;
}
}
void UpdateScheduled()
{
if ((millis() - lastUpdate) > Interval) // time to update
{
lastUpdate = millis();
Update();
}
}
// Increment the Index and reset at the end
void Increment()
{
completed = 0;
if (Direction == FORWARD)
{
Index++;
if (Index >= TotalSteps)
{
Index = 0;
completed = 1;
if (OnComplete != NULL)
{
OnComplete(numPixels()); // call the comlpetion callback
}
else
{
onCompleteDefault(numPixels());
}
}
}
else // Direction == REVERSE
{
--Index;
if (Index <= 0)
{
Index = TotalSteps - 1;
completed = 1;
if (OnComplete != NULL)
{
OnComplete(numPixels()); // call the comlpetion callback
}
else
{
onCompleteDefault(numPixels());
}
}
}
}
// Reverse pattern direction
void Reverse()
{
if (Direction == FORWARD)
{
Direction = REVERSE;
Index = TotalSteps - 1;
}
else
{
Direction = FORWARD;
Index = 0; Index = 0;
} completed = 1;
} if (OnComplete != NULL)
// Initialize for a RainbowCycle
void RainbowCycle(uint8_t interval, direction dir = FORWARD)
{
ActivePattern = RAINBOW_CYCLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
Direction = dir;
}
// Update the Rainbow Cycle Pattern
void RainbowCycleUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
}
show();
Increment();
}
// Initialize for a Theater Chase
void TheaterChase(uint32_t color1, uint32_t color2, uint16_t interval, direction dir = FORWARD)
{
ActivePattern = THEATER_CHASE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Theater Chase Pattern
void TheaterChaseUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 3 == 0)
{ {
setPixelColor(i, Color1); OnComplete(numPixels()); // call the comlpetion callback
} }
else else
{ {
setPixelColor(i, Color2); onCompleteDefault(numPixels());
} }
} }
show();
Increment();
} }
else // Direction == REVERSE
// Initialize for a ColorWipe
void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD)
{ {
ActivePattern = COLOR_WIPE; --Index;
Interval = interval; if (Index <= 0)
TotalSteps = numPixels();
Color1 = color;
Index = 0;
Direction = dir;
}
// Update the Color Wipe Pattern
void ColorWipeUpdate()
{
setPixelColor(Index, Color1);
show();
Increment();
}
// Initialize for a SCANNNER
void Scanner(uint32_t color1, uint8_t interval)
{
ActivePattern = SCANNER;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = 0;
}
// Update the Scanner Pattern
void ScannerUpdate()
{
for (int i = 0; i < numPixels(); i++)
{ {
if (i == Index) // Scan Pixel to the right Index = TotalSteps - 1;
completed = 1;
if (OnComplete != NULL)
{ {
setPixelColor(i, Color1); OnComplete(numPixels()); // call the comlpetion callback
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(i, Color1);
}
else // Fading tail
{
setPixelColor(i, DimColor(getPixelColor(i)));
}
}
show();
Increment();
}
// Initialize for a Fade
void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD)
{
ActivePattern = FADE;
Interval = interval;
TotalSteps = steps;
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Fade Pattern
void FadeUpdate()
{
// Calculate linear interpolation between Color1 and Color2
// Optimise order of operations to minimize truncation error
uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
ColorSet(Color(red, green, blue));
show();
Increment();
}
// Calculate 50% dimmed version of a color (used by ScannerUpdate)
uint32_t DimColor(uint32_t color)
{
// Shift R, G and B components one bit to the right
uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
return dimColor;
}
// Set all pixels to a color (synchronously)
void ColorSet(uint32_t color)
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, color);
}
show();
}
// Returns the Red component of a 32-bit color
uint8_t Red(uint32_t color)
{
return (color >> 16) & 0xFF;
}
// Returns the Green component of a 32-bit color
uint8_t Green(uint32_t color)
{
return (color >> 8) & 0xFF;
}
// Returns the Blue component of a 32-bit color
uint8_t Blue(uint32_t color)
{
return color & 0xFF;
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(uint8_t WheelPos)
{
//if(WheelPos == 0) return Color(0,0,0);
WheelPos = 255 - WheelPos;
if (WheelPos < 85)
{
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
else if (WheelPos < 170)
{
WheelPos -= 85;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
else
{
WheelPos -= 170;
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
/**
* Effects from https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/
*/
void Fire(int Cooling, int Sparking)
{
uint8_t heat[numPixels()];
int cooldown;
// Step 1. Cool down every cell a little
for (int i = 0; i < numPixels(); i++)
{
cooldown = random(0, ((Cooling * 10) / numPixels()) + 2);
if (cooldown > heat[i])
{
heat[i] = 0;
} }
else else
{ {
heat[i] = heat[i] - cooldown; onCompleteDefault(numPixels());
} }
} }
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for (int k = numPixels() - 1; k >= 2; k--)
{
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}
// Step 3. Randomly ignite new 'sparks' near the bottom
if (random(255) < Sparking)
{
int y = random(7);
heat[y] = heat[y] + random(160, 255);
//heat[y] = random(160,255);
}
// Step 4. Convert heat to LED colors
for (int j = 0; j < numPixels(); j++)
{
setPixelHeatColor(j, heat[j]);
}
showStrip();
} }
}
void setPixelHeatColor(int Pixel, uint8_t temperature) // Reverse pattern direction
void NeoPattern::Reverse()
{
if (Direction == FORWARD)
{ {
// Scale 'heat' down from 0-255 to 0-191 Direction = REVERSE;
uint8_t t192 = round((temperature / 255.0) * 191); Index = TotalSteps - 1;
}
else
{
Direction = FORWARD;
Index = 0;
}
}
// calculate ramp up from // Initialize for a RainbowCycle
uint8_t heatramp = t192 & 0x3F; // 0..63 void NeoPattern::RainbowCycle(uint8_t interval, direction dir)
heatramp <<= 2; // scale up to 0..252 {
ActivePattern = RAINBOW_CYCLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
Direction = dir;
}
// figure out which third of the spectrum we're in: // Update the Rainbow Cycle Pattern
if (t192 > 0x80) void NeoPattern::RainbowCycleUpdate()
{ // hottest {
setPixel(Pixel, 255, 255, heatramp); for (int i = 0; i < numPixels(); i++)
} {
else if (t192 > 0x40) setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
{ // middle }
setPixel(Pixel, 255, heatramp, 0); show();
Increment();
}
// Initialize for a Theater Chase
void NeoPattern::TheaterChase(uint32_t color1, uint32_t color2, uint16_t interval, direction dir)
{
ActivePattern = THEATER_CHASE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Theater Chase Pattern
void NeoPattern::TheaterChaseUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 3 == 0)
{
setPixelColor(i, Color1);
} }
else else
{ // coolest {
setPixel(Pixel, heatramp, 0, 0); setPixelColor(i, Color2);
}
}
show();
Increment();
}
// Initialize for a ColorWipe
void NeoPattern::ColorWipe(uint32_t color, uint8_t interval, direction dir)
{
ActivePattern = COLOR_WIPE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color;
Index = 0;
Direction = dir;
}
// Update the Color Wipe Pattern
void NeoPattern::ColorWipeUpdate()
{
setPixelColor(Index, Color1);
show();
Increment();
}
// Initialize for a SCANNNER
void NeoPattern::Scanner(uint32_t color1, uint8_t interval)
{
ActivePattern = SCANNER;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = 0;
}
// Update the Scanner Pattern
void NeoPattern::ScannerUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
if (i == Index) // Scan Pixel to the right
{
setPixelColor(i, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(i, Color1);
}
else // Fading tail
{
setPixelColor(i, DimColor(getPixelColor(i)));
}
}
show();
Increment();
}
// Initialize for a Fade
void NeoPattern::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir)
{
ActivePattern = FADE;
Interval = interval;
TotalSteps = steps;
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Fade Pattern
void NeoPattern::FadeUpdate()
{
// Calculate linear interpolation between Color1 and Color2
// Optimise order of operations to minimize truncation error
uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
ColorSet(Color(red, green, blue));
show();
Increment();
}
// Calculate 50% dimmed version of a color (used by ScannerUpdate)
uint32_t NeoPattern::DimColor(uint32_t color)
{
// Shift R, G and B components one bit to the right
uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
return dimColor;
}
// Set all pixels to a color (synchronously)
void NeoPattern::ColorSet(uint32_t color)
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, color);
}
show();
}
// Returns the Red component of a 32-bit color
uint8_t NeoPattern::Red(uint32_t color)
{
return (color >> 16) & 0xFF;
}
// Returns the Green component of a 32-bit color
uint8_t NeoPattern::Green(uint32_t color)
{
return (color >> 8) & 0xFF;
}
// Returns the Blue component of a 32-bit color
uint8_t NeoPattern::Blue(uint32_t color)
{
return color & 0xFF;
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t NeoPattern::Wheel(uint8_t WheelPos)
{
//if(WheelPos == 0) return Color(0,0,0);
WheelPos = 255 - WheelPos;
if (WheelPos < 85)
{
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
else if (WheelPos < 170)
{
WheelPos -= 85;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
else
{
WheelPos -= 170;
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
/**
* Effects from https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/
*/
void NeoPattern::Fire(int Cooling, int Sparking)
{
uint8_t heat[numPixels()];
int cooldown;
// Step 1. Cool down every cell a little
for (int i = 0; i < numPixels(); i++)
{
cooldown = random(0, ((Cooling * 10) / numPixels()) + 2);
if (cooldown > heat[i])
{
heat[i] = 0;
}
else
{
heat[i] = heat[i] - cooldown;
} }
} }
void setPixel(int Pixel, uint8_t red, uint8_t green, uint8_t blue) // Step 2. Heat from each cell drifts 'up' and diffuses a little
for (int k = numPixels() - 1; k >= 2; k--)
{ {
setPixelColor(Pixel, Color(red, green, blue)); heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
} }
void showStrip()
{
show();
}
};
#endif // Step 3. Randomly ignite new 'sparks' near the bottom
if (random(255) < Sparking)
{
int y = random(7);
heat[y] = heat[y] + random(160, 255);
//heat[y] = random(160,255);
}
// Step 4. Convert heat to LED colors
for (int j = 0; j < numPixels(); j++)
{
setPixelHeatColor(j, heat[j]);
}
showStrip();
}
void NeoPattern::setPixelHeatColor(int Pixel, uint8_t temperature)
{
// Scale 'heat' down from 0-255 to 0-191
uint8_t t192 = round((temperature / 255.0) * 191);
// calculate ramp up from
uint8_t heatramp = t192 & 0x3F; // 0..63
heatramp <<= 2; // scale up to 0..252
// figure out which third of the spectrum we're in:
if (t192 > 0x80)
{ // hottest
setPixel(Pixel, 255, 255, heatramp);
}
else if (t192 > 0x40)
{ // middle
setPixel(Pixel, 255, heatramp, 0);
}
else
{ // coolest
setPixel(Pixel, heatramp, 0, 0);
}
}
void NeoPattern::setPixel(int Pixel, uint8_t red, uint8_t green, uint8_t blue)
{
setPixelColor(Pixel, Color(red, green, blue));
}
void NeoPattern::showStrip()
{
show();
}

View File

@@ -0,0 +1,109 @@
/**
* Original NeoPattern code by Bill Earl
* https://learn.adafruit.com/multi-tasking-the-arduino-part-3/overview
*
* Custom modifications by 0x1d:
* - default OnComplete callback that sets pattern to reverse
* - separate animation update from timer; Update now updates directly, UpdateScheduled uses timer
*/
#ifndef __NeoPattern_INCLUDED__
#define __NeoPattern_INCLUDED__
#include <Adafruit_NeoPixel.h>
using namespace std;
// Pattern types supported:
enum pattern
{
NONE = 0,
RAINBOW_CYCLE = 1,
THEATER_CHASE = 2,
COLOR_WIPE = 3,
SCANNER = 4,
FADE = 5,
FIRE = 6
};
// Pattern directions supported:
enum direction
{
FORWARD,
REVERSE
};
// NeoPattern Class - derived from the Adafruit_NeoPixel class
class NeoPattern : public Adafruit_NeoPixel
{
public:
// Member Variables:
pattern ActivePattern = RAINBOW_CYCLE; // which pattern is running
direction Direction = FORWARD; // direction to run the pattern
unsigned long Interval = 150; // milliseconds between updates
unsigned long lastUpdate = 0; // last update of position
uint32_t Color1 = 0;
uint32_t Color2 = 0; // What colors are in use
uint16_t TotalSteps = 32; // total number of steps in the pattern
uint16_t Index; // current step within the pattern
uint16_t completed = 0;
// Callback on completion of pattern
void (*OnComplete)(int);
uint8_t *frameBuffer;
int bufferSize = 0;
// Constructor - calls base-class constructor to initialize strip
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(int));
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type);
~NeoPattern();
// Stream handling
void handleStream(uint8_t *data, size_t len);
void drawFrameBuffer(int w, uint8_t *frame, int length);
// Pattern completion
void onCompleteDefault(int pixels);
// Pattern control
void Increment();
void Reverse();
// Rainbow Cycle
void RainbowCycle(uint8_t interval, direction dir = FORWARD);
void RainbowCycleUpdate();
// Theater Chase
void TheaterChase(uint32_t color1, uint32_t color2, uint16_t interval, direction dir = FORWARD);
void TheaterChaseUpdate();
// Color Wipe
void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD);
void ColorWipeUpdate();
// Scanner
void Scanner(uint32_t color1, uint8_t interval);
void ScannerUpdate();
// Fade
void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD);
void FadeUpdate();
// Fire effect
void Fire(int Cooling, int Sparking);
void setPixelHeatColor(int Pixel, uint8_t temperature);
void setPixel(int Pixel, uint8_t red, uint8_t green, uint8_t blue);
void showStrip();
// Utility methods
uint32_t DimColor(uint32_t color);
void ColorSet(uint32_t color);
uint8_t Red(uint32_t color);
uint8_t Green(uint32_t color);
uint8_t Blue(uint32_t color);
uint32_t Wheel(uint8_t WheelPos);
};
#endif

View File

@@ -1,56 +1,96 @@
#include "NeoPatternService.h" #include "NeoPatternService.h"
#include "spore/core/ApiServer.h" #include "spore/core/ApiServer.h"
#include "spore/util/Logging.h"
#include <ArduinoJson.h>
NeoPatternService::NeoPatternService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, uint8_t type) NeoPatternService::NeoPatternService(TaskManager& taskMgr, const NeoPixelConfig& config)
: taskManager(taskMgr), : taskManager(taskMgr),
pixels(numPixels, pin, type), config(config),
updateIntervalMs(100), activePattern(NeoPatternType::RAINBOW_CYCLE),
brightness(48) { direction(NeoDirection::FORWARD),
pixels.setBrightness(brightness); updateIntervalMs(config.updateInterval),
pixels.show(); lastUpdateMs(0),
initialized(false) {
// Initialize NeoPattern
neoPattern = new NeoPattern(config.length, config.pin, NEO_GRB + NEO_KHZ800);
neoPattern->setBrightness(config.brightness);
// Initialize state
currentState.pattern = static_cast<uint>(activePattern);
currentState.color = 0xFF0000; // Red
currentState.color2 = 0x0000FF; // Blue
currentState.totalSteps = 16;
currentState.brightness = config.brightness;
// Set initial pattern
neoPattern->Color1 = currentState.color;
neoPattern->Color2 = currentState.color2;
neoPattern->TotalSteps = currentState.totalSteps;
neoPattern->ActivePattern = static_cast<::pattern>(activePattern);
neoPattern->Direction = static_cast<::direction>(direction);
registerPatterns();
registerTasks(); registerTasks();
setPatternByName("rainbow_cycle"); initialized = true;
LOG_INFO("NeoPattern", "Service initialized");
}
NeoPatternService::~NeoPatternService() {
if (neoPattern) {
delete neoPattern;
}
} }
void NeoPatternService::registerEndpoints(ApiServer& api) { void NeoPatternService::registerEndpoints(ApiServer& api) {
// Status endpoint
api.addEndpoint("/api/neopattern/status", HTTP_GET, api.addEndpoint("/api/neopattern/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); }, [this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{});
// Patterns list endpoint
api.addEndpoint("/api/neopattern/patterns", HTTP_GET, api.addEndpoint("/api/neopattern/patterns", HTTP_GET,
[this](AsyncWebServerRequest* request) { handlePatternsRequest(request); }, [this](AsyncWebServerRequest* request) { handlePatternsRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{});
// Control endpoint
api.addEndpoint("/api/neopattern", HTTP_POST, api.addEndpoint("/api/neopattern", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); }, [this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{ std::vector<ParamSpec>{
ParamSpec{String("pattern"), false, String("body"), String("string"), patternNamesVector()}, ParamSpec{String("pattern"), false, String("body"), String("string"), patternNamesVector()},
ParamSpec{String("interval_ms"), false, String("body"), String("number"), {}, String("100")},
ParamSpec{String("brightness"), false, String("body"), String("number"), {}, String("50")},
ParamSpec{String("color"), false, String("body"), String("color"), {}}, ParamSpec{String("color"), false, String("body"), String("color"), {}},
ParamSpec{String("color2"), false, String("body"), String("color"), {}}, ParamSpec{String("color2"), false, String("body"), String("color"), {}},
ParamSpec{String("r"), false, String("body"), String("number"), {}}, ParamSpec{String("brightness"), false, String("body"), String("numberRange"), {}, String("80")},
ParamSpec{String("g"), false, String("body"), String("number"), {}}, ParamSpec{String("total_steps"), false, String("body"), String("numberRange"), {}, String("16")},
ParamSpec{String("b"), false, String("body"), String("number"), {}}, ParamSpec{String("direction"), false, String("body"), String("string"), {String("forward"), String("reverse")}},
ParamSpec{String("r2"), false, String("body"), String("number"), {}}, ParamSpec{String("interval"), false, String("body"), String("number"), {}, String("100")}
ParamSpec{String("g2"), false, String("body"), String("number"), {}},
ParamSpec{String("b2"), false, String("body"), String("number"), {}},
ParamSpec{String("total_steps"), false, String("body"), String("number"), {}},
ParamSpec{String("direction"), false, String("body"), String("string"), {String("forward"), String("reverse")}}
}); });
// State endpoint for complex state updates
api.addEndpoint("/api/neopattern/state", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleStateRequest(request); },
std::vector<ParamSpec>{});
} }
void NeoPatternService::handleStatusRequest(AsyncWebServerRequest* request) { void NeoPatternService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc; JsonDocument doc;
doc["pin"] = pixels.getPin(); doc["pin"] = config.pin;
doc["count"] = pixels.numPixels(); doc["length"] = config.length;
doc["interval_ms"] = updateIntervalMs; doc["brightness"] = currentState.brightness;
doc["brightness"] = brightness;
doc["pattern"] = currentPatternName(); doc["pattern"] = currentPatternName();
doc["total_steps"] = pixels.TotalSteps; doc["color"] = String(currentState.color, HEX);
doc["color1"] = pixels.Color1; doc["color2"] = String(currentState.color2, HEX);
doc["color2"] = pixels.Color2; doc["total_steps"] = currentState.totalSteps;
doc["direction"] = (direction == NeoDirection::FORWARD) ? "forward" : "reverse";
doc["interval"] = updateIntervalMs;
doc["active"] = initialized;
// Add pattern metadata
String currentPattern = currentPatternName();
doc["pattern_description"] = getPatternDescription(currentPattern);
doc["pattern_requires_color2"] = patternRequiresColor2(currentPattern);
doc["pattern_supports_direction"] = patternSupportsDirection(currentPattern);
String json; String json;
serializeJson(doc, json); serializeJson(doc, json);
@@ -60,7 +100,17 @@ void NeoPatternService::handleStatusRequest(AsyncWebServerRequest* request) {
void NeoPatternService::handlePatternsRequest(AsyncWebServerRequest* request) { void NeoPatternService::handlePatternsRequest(AsyncWebServerRequest* request) {
JsonDocument doc; JsonDocument doc;
JsonArray arr = doc.to<JsonArray>(); JsonArray arr = doc.to<JsonArray>();
for (auto& kv : patternSetters) arr.add(kv.first);
// Get all patterns from registry and include metadata
auto patterns = patternRegistry.getAllPatterns();
for (const auto& pattern : patterns) {
JsonObject patternObj = arr.add<JsonObject>();
patternObj["name"] = pattern.name;
patternObj["type"] = pattern.type;
patternObj["description"] = pattern.description;
patternObj["requires_color2"] = pattern.requiresColor2;
patternObj["supports_direction"] = pattern.supportsDirection;
}
String json; String json;
serializeJson(doc, json); serializeJson(doc, json);
@@ -68,121 +118,334 @@ void NeoPatternService::handlePatternsRequest(AsyncWebServerRequest* request) {
} }
void NeoPatternService::handleControlRequest(AsyncWebServerRequest* request) { void NeoPatternService::handleControlRequest(AsyncWebServerRequest* request) {
bool updated = false;
if (request->hasParam("pattern", true)) { if (request->hasParam("pattern", true)) {
String name = request->getParam("pattern", true)->value(); String name = request->getParam("pattern", true)->value();
setPatternByName(name); if (isValidPattern(name)) {
setPatternByName(name);
updated = true;
} else {
// Invalid pattern name - could add error handling here
LOG_WARN("NeoPattern", "Invalid pattern name: " + name);
}
} }
if (request->hasParam("interval_ms", true)) { if (request->hasParam("color", true)) {
unsigned long v = request->getParam("interval_ms", true)->value().toInt(); String colorStr = request->getParam("color", true)->value();
if (v < 1) v = 1; uint32_t color = parseColor(colorStr);
updateIntervalMs = v; setColor(color);
taskManager.setTaskInterval("neopattern_update", updateIntervalMs); updated = true;
}
if (request->hasParam("color2", true)) {
String colorStr = request->getParam("color2", true)->value();
uint32_t color = parseColor(colorStr);
setColor2(color);
updated = true;
} }
if (request->hasParam("brightness", true)) { if (request->hasParam("brightness", true)) {
int b = request->getParam("brightness", true)->value().toInt(); int b = request->getParam("brightness", true)->value().toInt();
if (b < 0) b = 0; if (b < 0) b = 0;
if (b > 255) b = 255; if (b > 255) b = 255;
setBrightness((uint8_t)b); setBrightness(static_cast<uint8_t>(b));
} updated = true;
// Accept packed color ints or r,g,b triplets
if (request->hasParam("color", true)) {
pixels.Color1 = (uint32_t)strtoul(request->getParam("color", true)->value().c_str(), nullptr, 0);
}
if (request->hasParam("color2", true)) {
pixels.Color2 = (uint32_t)strtoul(request->getParam("color2", true)->value().c_str(), nullptr, 0);
}
if (request->hasParam("r", true) || request->hasParam("g", true) || request->hasParam("b", true)) {
int r = request->hasParam("r", true) ? request->getParam("r", true)->value().toInt() : 0;
int g = request->hasParam("g", true) ? request->getParam("g", true)->value().toInt() : 0;
int b = request->hasParam("b", true) ? request->getParam("b", true)->value().toInt() : 0;
pixels.Color1 = pixels.Color(r, g, b);
}
if (request->hasParam("r2", true) || request->hasParam("g2", true) || request->hasParam("b2", true)) {
int r = request->hasParam("r2", true) ? request->getParam("r2", true)->value().toInt() : 0;
int g = request->hasParam("g2", true) ? request->getParam("g2", true)->value().toInt() : 0;
int b = request->hasParam("b2", true) ? request->getParam("b2", true)->value().toInt() : 0;
pixels.Color2 = pixels.Color(r, g, b);
} }
if (request->hasParam("total_steps", true)) { if (request->hasParam("total_steps", true)) {
pixels.TotalSteps = request->getParam("total_steps", true)->value().toInt(); int steps = request->getParam("total_steps", true)->value().toInt();
if (steps > 0) {
setTotalSteps(static_cast<uint16_t>(steps));
updated = true;
}
} }
if (request->hasParam("direction", true)) { if (request->hasParam("direction", true)) {
String dir = request->getParam("direction", true)->value(); String dirStr = request->getParam("direction", true)->value();
if (dir.equalsIgnoreCase("forward")) pixels.Direction = FORWARD; NeoDirection dir = (dirStr.equalsIgnoreCase("reverse")) ? NeoDirection::REVERSE : NeoDirection::FORWARD;
else if (dir.equalsIgnoreCase("reverse")) pixels.Direction = REVERSE; setDirection(dir);
updated = true;
} }
if (request->hasParam("interval", true)) {
unsigned long interval = request->getParam("interval", true)->value().toInt();
if (interval > 0) {
setUpdateInterval(interval);
updated = true;
}
}
// Return current state
JsonDocument resp; JsonDocument resp;
resp["ok"] = true; resp["ok"] = true;
resp["pattern"] = currentPatternName(); resp["pattern"] = currentPatternName();
resp["interval_ms"] = updateIntervalMs; resp["color"] = String(currentState.color, HEX);
resp["brightness"] = brightness; resp["color2"] = String(currentState.color2, HEX);
resp["brightness"] = currentState.brightness;
resp["total_steps"] = currentState.totalSteps;
resp["direction"] = (direction == NeoDirection::FORWARD) ? "forward" : "reverse";
resp["interval"] = updateIntervalMs;
resp["updated"] = updated;
String json; String json;
serializeJson(resp, json); serializeJson(resp, json);
request->send(200, "application/json", json); request->send(200, "application/json", json);
} }
void NeoPatternService::setBrightness(uint8_t b) { void NeoPatternService::handleStateRequest(AsyncWebServerRequest* request) {
brightness = b; if (request->contentType() != "application/json") {
pixels.setBrightness(brightness); request->send(400, "application/json", "{\"error\":\"Content-Type must be application/json\"}");
pixels.show(); return;
}
// Note: AsyncWebServerRequest doesn't have getBody() method
// For now, we'll skip JSON body parsing and use form parameters
request->send(400, "application/json", "{\"error\":\"JSON body parsing not implemented\"}");
return;
// JSON body parsing not implemented for AsyncWebServerRequest
// This would need to be implemented differently
request->send(501, "application/json", "{\"error\":\"Not implemented\"}");
}
void NeoPatternService::setPattern(NeoPatternType pattern) {
activePattern = pattern;
currentState.pattern = static_cast<uint>(pattern);
neoPattern->ActivePattern = static_cast<::pattern>(pattern);
resetStateForPattern(pattern);
// Initialize the pattern using the registry
patternRegistry.initializePattern(static_cast<uint8_t>(pattern));
}
void NeoPatternService::setPatternByName(const String& name) {
NeoPatternType pattern = nameToPattern(name);
setPattern(pattern);
}
void NeoPatternService::setColor(uint32_t color) {
currentState.color = color;
neoPattern->Color1 = color;
if (activePattern == NeoPatternType::NONE) {
neoPattern->ColorSet(color);
}
}
void NeoPatternService::setColor2(uint32_t color) {
currentState.color2 = color;
neoPattern->Color2 = color;
}
void NeoPatternService::setBrightness(uint8_t brightness) {
currentState.brightness = brightness;
neoPattern->setBrightness(brightness);
neoPattern->show();
}
void NeoPatternService::setTotalSteps(uint16_t steps) {
currentState.totalSteps = steps;
neoPattern->TotalSteps = steps;
}
void NeoPatternService::setDirection(NeoDirection dir) {
direction = dir;
neoPattern->Direction = static_cast<::direction>(dir);
}
void NeoPatternService::setUpdateInterval(unsigned long interval) {
updateIntervalMs = interval;
taskManager.setTaskInterval("neopattern_update", interval);
}
void NeoPatternService::setState(const NeoPatternState& state) {
currentState = state;
// Apply state to NeoPattern
neoPattern->Index = 0;
neoPattern->Color1 = state.color;
neoPattern->Color2 = state.color2;
neoPattern->TotalSteps = state.totalSteps;
neoPattern->ActivePattern = static_cast<::pattern>(state.pattern);
neoPattern->Direction = FORWARD;
setBrightness(state.brightness);
setPattern(static_cast<NeoPatternType>(state.pattern));
}
NeoPatternState NeoPatternService::getState() const {
return currentState;
} }
void NeoPatternService::registerTasks() { void NeoPatternService::registerTasks() {
taskManager.registerTask("neopattern_update", updateIntervalMs, [this]() { update(); }); taskManager.registerTask("neopattern_update", updateIntervalMs, [this]() { update(); });
taskManager.registerTask("neopattern_status_print", 10000, [this]() { taskManager.registerTask("neopattern_status_print", 10000, [this]() {
Serial.printf("[NeoPattern] pattern=%s interval=%lu ms brightness=%u\n", LOG_INFO("NeoPattern", "Status update");
currentPatternName().c_str(), updateIntervalMs, brightness);
}); });
} }
void NeoPatternService::registerPatterns() { void NeoPatternService::registerPatterns() {
patternSetters["off"] = [this]() { pixels.ActivePattern = NONE; }; // Register all patterns with their metadata and callbacks
patternSetters["rainbow_cycle"] = [this]() { pixels.RainbowCycle(updateIntervalMs); }; patternRegistry.registerPattern(
patternSetters["theater_chase"] = [this]() { pixels.TheaterChase(pixels.Color1 ? pixels.Color1 : pixels.Color(127,127,127), pixels.Color2, updateIntervalMs); }; "none",
patternSetters["color_wipe"] = [this]() { pixels.ColorWipe(pixels.Color1 ? pixels.Color1 : pixels.Color(255,0,0), updateIntervalMs); }; static_cast<uint8_t>(NeoPatternType::NONE),
patternSetters["scanner"] = [this]() { pixels.Scanner(pixels.Color1 ? pixels.Color1 : pixels.Color(0,0,255), updateIntervalMs); }; "No pattern - solid color",
patternSetters["fade"] = [this]() { pixels.Fade(pixels.Color1, pixels.Color2, pixels.TotalSteps ? pixels.TotalSteps : 32, updateIntervalMs); }; [this]() { /* No initialization needed */ },
patternSetters["fire"] = [this]() { pixels.ActivePattern = FIRE; pixels.Interval = updateIntervalMs; }; [this]() { updateNone(); },
false, // doesn't require color2
false // doesn't support direction
);
patternRegistry.registerPattern(
"rainbow_cycle",
static_cast<uint8_t>(NeoPatternType::RAINBOW_CYCLE),
"Rainbow cycle pattern",
[this]() { neoPattern->RainbowCycle(updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateRainbowCycle(); },
false, // doesn't require color2
true // supports direction
);
patternRegistry.registerPattern(
"theater_chase",
static_cast<uint8_t>(NeoPatternType::THEATER_CHASE),
"Theater chase pattern",
[this]() { neoPattern->TheaterChase(currentState.color, currentState.color2, updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateTheaterChase(); },
true, // requires color2
true // supports direction
);
patternRegistry.registerPattern(
"color_wipe",
static_cast<uint8_t>(NeoPatternType::COLOR_WIPE),
"Color wipe pattern",
[this]() { neoPattern->ColorWipe(currentState.color, updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateColorWipe(); },
false, // doesn't require color2
true // supports direction
);
patternRegistry.registerPattern(
"scanner",
static_cast<uint8_t>(NeoPatternType::SCANNER),
"Scanner pattern",
[this]() { neoPattern->Scanner(currentState.color, updateIntervalMs); },
[this]() { updateScanner(); },
false, // doesn't require color2
false // doesn't support direction
);
patternRegistry.registerPattern(
"fade",
static_cast<uint8_t>(NeoPatternType::FADE),
"Fade pattern",
[this]() { neoPattern->Fade(currentState.color, currentState.color2, currentState.totalSteps, updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateFade(); },
true, // requires color2
true // supports direction
);
patternRegistry.registerPattern(
"fire",
static_cast<uint8_t>(NeoPatternType::FIRE),
"Fire effect pattern",
[this]() { neoPattern->Fire(50, 120); },
[this]() { updateFire(); },
false, // doesn't require color2
false // doesn't support direction
);
} }
std::vector<String> NeoPatternService::patternNamesVector() { std::vector<String> NeoPatternService::patternNamesVector() const {
if (patternSetters.empty()) registerPatterns(); return patternRegistry.getAllPatternNames();
std::vector<String> v;
v.reserve(patternSetters.size());
for (const auto& kv : patternSetters) v.push_back(kv.first);
return v;
} }
String NeoPatternService::currentPatternName() { String NeoPatternService::currentPatternName() const {
switch (pixels.ActivePattern) { return patternRegistry.getPatternName(static_cast<uint8_t>(activePattern));
case NONE: return String("off"); }
case RAINBOW_CYCLE: return String("rainbow_cycle");
case THEATER_CHASE: return String("theater_chase"); NeoPatternService::NeoPatternType NeoPatternService::nameToPattern(const String& name) const {
case COLOR_WIPE: return String("color_wipe"); uint8_t type = patternRegistry.getPatternType(name);
case SCANNER: return String("scanner"); return static_cast<NeoPatternType>(type);
case FADE: return String("fade"); }
case FIRE: return String("fire");
void NeoPatternService::resetStateForPattern(NeoPatternType pattern) {
neoPattern->Index = 0;
neoPattern->Direction = static_cast<::direction>(direction);
neoPattern->completed = 0;
lastUpdateMs = 0;
}
uint32_t NeoPatternService::parseColor(const String& colorStr) const {
if (colorStr.startsWith("#")) {
return strtoul(colorStr.substring(1).c_str(), nullptr, 16);
} else if (colorStr.startsWith("0x") || colorStr.startsWith("0X")) {
return strtoul(colorStr.c_str(), nullptr, 16);
} else {
return strtoul(colorStr.c_str(), nullptr, 10);
} }
return String("off");
} }
void NeoPatternService::setPatternByName(const String& name) { bool NeoPatternService::isValidPattern(const String& name) const {
if (patternSetters.empty()) registerPatterns(); return patternRegistry.isValidPattern(name);
auto it = patternSetters.find(name); }
if (it != patternSetters.end()) {
pixels.Index = 0; bool NeoPatternService::isValidPattern(NeoPatternType type) const {
pixels.Direction = FORWARD; return patternRegistry.isValidPattern(static_cast<uint8_t>(type));
it->second(); }
}
bool NeoPatternService::patternRequiresColor2(const String& name) const {
const PatternInfo* info = patternRegistry.getPattern(name);
return info ? info->requiresColor2 : false;
}
bool NeoPatternService::patternSupportsDirection(const String& name) const {
const PatternInfo* info = patternRegistry.getPattern(name);
return info ? info->supportsDirection : false;
}
String NeoPatternService::getPatternDescription(const String& name) const {
const PatternInfo* info = patternRegistry.getPattern(name);
return info ? info->description : "";
} }
void NeoPatternService::update() { void NeoPatternService::update() {
pixels.Update(); if (!initialized) return;
//unsigned long now = millis();
//if (now - lastUpdateMs < updateIntervalMs) return;
//lastUpdateMs = now;
// Use pattern registry to execute the current pattern
patternRegistry.executePattern(static_cast<uint8_t>(activePattern));
}
void NeoPatternService::updateRainbowCycle() {
neoPattern->RainbowCycleUpdate();
}
void NeoPatternService::updateTheaterChase() {
neoPattern->TheaterChaseUpdate();
}
void NeoPatternService::updateColorWipe() {
neoPattern->ColorWipeUpdate();
}
void NeoPatternService::updateScanner() {
neoPattern->ScannerUpdate();
}
void NeoPatternService::updateFade() {
neoPattern->FadeUpdate();
}
void NeoPatternService::updateFire() {
neoPattern->Fire(50, 120);
}
void NeoPatternService::updateNone() {
// For NONE pattern, just show the current color
neoPattern->ColorSet(neoPattern->Color1);
} }

View File

@@ -1,34 +1,95 @@
#pragma once #pragma once
#include "spore/Service.h" #include "spore/Service.h"
#include "spore/core/TaskManager.h" #include "spore/core/TaskManager.h"
#include "NeoPattern.cpp" #include "NeoPattern.h"
#include "NeoPatternState.h"
#include "NeoPixelConfig.h"
#include "PatternRegistry.h"
#include <map> #include <map>
#include <vector> #include <functional>
class NeoPatternService : public Service { class NeoPatternService : public Service {
public: public:
NeoPatternService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, uint8_t type); enum class NeoPatternType {
NONE = 0,
RAINBOW_CYCLE = 1,
THEATER_CHASE = 2,
COLOR_WIPE = 3,
SCANNER = 4,
FADE = 5,
FIRE = 6
};
enum class NeoDirection {
FORWARD,
REVERSE
};
NeoPatternService(TaskManager& taskMgr, const NeoPixelConfig& config);
~NeoPatternService();
void registerEndpoints(ApiServer& api) override; void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "NeoPattern"; } const char* getName() const override { return "NeoPattern"; }
void setBrightness(uint8_t b); // Pattern control methods
void setPattern(NeoPatternType pattern);
void setPatternByName(const String& name); void setPatternByName(const String& name);
void setColor(uint32_t color);
void setColor2(uint32_t color2);
void setBrightness(uint8_t brightness);
void setTotalSteps(uint16_t steps);
void setDirection(NeoDirection direction);
void setUpdateInterval(unsigned long interval);
// State management
void setState(const NeoPatternState& state);
NeoPatternState getState() const;
private: private:
void registerTasks(); void registerTasks();
void registerPatterns(); void registerPatterns();
std::vector<String> patternNamesVector();
String currentPatternName();
void update(); void update();
// Handlers // Pattern updaters
void updateRainbowCycle();
void updateTheaterChase();
void updateColorWipe();
void updateScanner();
void updateFade();
void updateFire();
void updateNone();
// API handlers
void handleStatusRequest(AsyncWebServerRequest* request); void handleStatusRequest(AsyncWebServerRequest* request);
void handlePatternsRequest(AsyncWebServerRequest* request); void handlePatternsRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request); void handleControlRequest(AsyncWebServerRequest* request);
void handleStateRequest(AsyncWebServerRequest* request);
// Utility methods
std::vector<String> patternNamesVector() const;
String currentPatternName() const;
NeoPatternType nameToPattern(const String& name) const;
void resetStateForPattern(NeoPatternType pattern);
uint32_t parseColor(const String& colorStr) const;
// Pattern validation methods
bool isValidPattern(const String& name) const;
bool isValidPattern(NeoPatternType type) const;
bool patternRequiresColor2(const String& name) const;
bool patternSupportsDirection(const String& name) const;
String getPatternDescription(const String& name) const;
TaskManager& taskManager; TaskManager& taskManager;
NeoPattern pixels; NeoPattern* neoPattern;
NeoPixelConfig config;
NeoPatternState currentState;
// Pattern registry for centralized pattern management
PatternRegistry patternRegistry;
NeoPatternType activePattern;
NeoDirection direction;
unsigned long updateIntervalMs; unsigned long updateIntervalMs;
uint8_t brightness; unsigned long lastUpdateMs;
std::map<String, std::function<void()>> patternSetters; bool initialized;
}; };

View File

@@ -0,0 +1,59 @@
#ifndef __NEOPATTERN_STATE__
#define __NEOPATTERN_STATE__
#include <ArduinoJson.h>
struct NeoPatternState {
// Default values
static constexpr uint DEFAULT_PATTERN = 0;
static constexpr uint DEFAULT_COLOR = 0xFF0000; // Red
static constexpr uint DEFAULT_COLOR2 = 0x0000FF; // Blue
static constexpr uint DEFAULT_TOTAL_STEPS = 16;
static constexpr uint DEFAULT_BRIGHTNESS = 64;
uint pattern = DEFAULT_PATTERN;
uint color = DEFAULT_COLOR;
uint color2 = DEFAULT_COLOR2;
uint totalSteps = DEFAULT_TOTAL_STEPS;
uint brightness = DEFAULT_BRIGHTNESS;
NeoPatternState() = default;
NeoPatternState(uint p, uint c, uint c2, uint steps, uint b)
: pattern(p), color(c), color2(c2), totalSteps(steps), brightness(b) {}
void mapJsonObject(JsonObject& root) const {
root["pattern"] = pattern;
root["color"] = color;
root["color2"] = color2;
root["totalSteps"] = totalSteps;
root["brightness"] = brightness;
}
void fromJsonObject(JsonObject& json) {
pattern = json["pattern"] | pattern;
color = json["color"] | color;
color2 = json["color2"] | color2;
totalSteps = json["totalSteps"] | totalSteps;
brightness = json["brightness"] | brightness;
}
// Helper methods for JSON string conversion
String toJsonString() const {
JsonDocument doc;
JsonObject root = doc.to<JsonObject>();
mapJsonObject(root);
String result;
serializeJson(doc, result);
return result;
}
void fromJsonString(const String& jsonStr) {
JsonDocument doc;
deserializeJson(doc, jsonStr);
JsonObject root = doc.as<JsonObject>();
fromJsonObject(root);
}
};
#endif

View File

@@ -0,0 +1,45 @@
#ifndef __NEOPIXEL_CONFIG__
#define __NEOPIXEL_CONFIG__
#include <ArduinoJson.h>
struct NeoPixelConfig
{
// Configuration constants
static constexpr int DEFAULT_PIN = 2;
static constexpr int DEFAULT_LENGTH = 8;
static constexpr int DEFAULT_BRIGHTNESS = 100;
static constexpr int DEFAULT_UPDATE_INTERVAL = 100;
static constexpr int DEFAULT_COLOR = 0xFF0000; // Red
int pin = DEFAULT_PIN;
int length = DEFAULT_LENGTH;
int brightness = DEFAULT_BRIGHTNESS;
int updateInterval = DEFAULT_UPDATE_INTERVAL;
int defaultColor = DEFAULT_COLOR;
NeoPixelConfig() = default;
NeoPixelConfig(int p, int l, int b, int interval, int color = DEFAULT_COLOR)
: pin(p), length(l), brightness(b), updateInterval(interval), defaultColor(color) {}
void mapJsonObject(JsonObject &root) const
{
root["pin"] = pin;
root["length"] = length;
root["brightness"] = brightness;
root["updateInterval"] = updateInterval;
root["defaultColor"] = defaultColor;
}
void fromJsonObject(JsonObject &json)
{
pin = json["pin"] | pin;
length = json["length"] | length;
brightness = json["brightness"] | brightness;
updateInterval = json["updateInterval"] | updateInterval;
defaultColor = json["defaultColor"] | defaultColor;
}
};
#endif

View File

@@ -0,0 +1,101 @@
#include "PatternRegistry.h"
PatternRegistry::PatternRegistry() {
// Constructor - patterns will be registered by the service
}
void PatternRegistry::registerPattern(const PatternInfo& pattern) {
patternMap_[pattern.name] = pattern;
typeToNameMap_[pattern.type] = pattern.name;
}
void PatternRegistry::registerPattern(const String& name, uint8_t type, const String& description,
std::function<void()> initializer, std::function<void()> updater,
bool requiresColor2, bool supportsDirection) {
PatternInfo info(name, type, description, initializer, updater, requiresColor2, supportsDirection);
registerPattern(info);
}
const PatternInfo* PatternRegistry::getPattern(const String& name) const {
auto it = patternMap_.find(name);
return (it != patternMap_.end()) ? &it->second : nullptr;
}
const PatternInfo* PatternRegistry::getPattern(uint8_t type) const {
auto typeIt = typeToNameMap_.find(type);
if (typeIt == typeToNameMap_.end()) {
return nullptr;
}
return getPattern(typeIt->second);
}
String PatternRegistry::getPatternName(uint8_t type) const {
auto it = typeToNameMap_.find(type);
return (it != typeToNameMap_.end()) ? it->second : "";
}
uint8_t PatternRegistry::getPatternType(const String& name) const {
const PatternInfo* info = getPattern(name);
return info ? info->type : 0;
}
std::vector<String> PatternRegistry::getAllPatternNames() const {
std::vector<String> names;
names.reserve(patternMap_.size());
for (const auto& pair : patternMap_) {
names.push_back(pair.first);
}
return names;
}
std::vector<PatternInfo> PatternRegistry::getAllPatterns() const {
std::vector<PatternInfo> patterns;
patterns.reserve(patternMap_.size());
for (const auto& pair : patternMap_) {
patterns.push_back(pair.second);
}
return patterns;
}
bool PatternRegistry::isValidPattern(const String& name) const {
return patternMap_.find(name) != patternMap_.end();
}
bool PatternRegistry::isValidPattern(uint8_t type) const {
return typeToNameMap_.find(type) != typeToNameMap_.end();
}
void PatternRegistry::executePattern(const String& name) const {
const PatternInfo* info = getPattern(name);
if (info && info->updater) {
info->updater();
}
}
void PatternRegistry::executePattern(uint8_t type) const {
const PatternInfo* info = getPattern(type);
if (info && info->updater) {
info->updater();
}
}
void PatternRegistry::initializePattern(const String& name) const {
const PatternInfo* info = getPattern(name);
if (info && info->initializer) {
info->initializer();
}
}
void PatternRegistry::initializePattern(uint8_t type) const {
const PatternInfo* info = getPattern(type);
if (info && info->initializer) {
info->initializer();
}
}
void PatternRegistry::updateTypeMap() {
typeToNameMap_.clear();
for (const auto& pair : patternMap_) {
typeToNameMap_[pair.second.type] = pair.first;
}
}

View File

@@ -0,0 +1,73 @@
#pragma once
#include <map>
#include <functional>
#include <vector>
#include <Arduino.h>
/**
* PatternInfo structure containing all information needed for a pattern
*/
struct PatternInfo {
String name;
uint8_t type;
String description;
std::function<void()> updater;
std::function<void()> initializer;
bool requiresColor2;
bool supportsDirection;
// Default constructor for std::map compatibility
PatternInfo() : type(0), requiresColor2(false), supportsDirection(false) {}
// Parameterized constructor
PatternInfo(const String& n, uint8_t t, const String& desc,
std::function<void()> initFunc, std::function<void()> updateFunc = nullptr,
bool needsColor2 = false, bool supportsDir = true)
: name(n), type(t), description(desc), updater(updateFunc),
initializer(initFunc), requiresColor2(needsColor2), supportsDirection(supportsDir) {}
};
/**
* PatternRegistry class for centralized pattern management
*/
class PatternRegistry {
public:
using PatternMap = std::map<String, PatternInfo>;
using PatternTypeMap = std::map<uint8_t, String>;
PatternRegistry();
~PatternRegistry() = default;
// Pattern registration
void registerPattern(const PatternInfo& pattern);
void registerPattern(const String& name, uint8_t type, const String& description,
std::function<void()> initializer, std::function<void()> updater = nullptr,
bool requiresColor2 = false, bool supportsDirection = true);
// Pattern lookup
const PatternInfo* getPattern(const String& name) const;
const PatternInfo* getPattern(uint8_t type) const;
String getPatternName(uint8_t type) const;
uint8_t getPatternType(const String& name) const;
// Pattern enumeration
std::vector<String> getAllPatternNames() const;
std::vector<PatternInfo> getAllPatterns() const;
const PatternMap& getPatternMap() const { return patternMap_; }
// Pattern validation
bool isValidPattern(const String& name) const;
bool isValidPattern(uint8_t type) const;
// Pattern execution
void executePattern(const String& name) const;
void executePattern(uint8_t type) const;
void initializePattern(const String& name) const;
void initializePattern(uint8_t type) const;
private:
PatternMap patternMap_;
PatternTypeMap typeToNameMap_;
void updateTypeMap();
};

View File

@@ -0,0 +1,131 @@
# NeoPattern Service for Spore Framework
This example demonstrates how to integrate a NeoPixel pattern service with the Spore framework. It provides a comprehensive LED strip control system with multiple animation patterns and REST API endpoints.
## Features
- **Multiple Animation Patterns**: Rainbow cycle, theater chase, color wipe, scanner, fade, and fire effects
- **REST API Control**: Full HTTP API for pattern control and configuration
- **Real-time Updates**: Smooth pattern transitions and real-time parameter changes
- **State Management**: Persistent state with JSON serialization
- **Spore Integration**: Built on the Spore framework for networking and task management
## Hardware Requirements
- ESP32 or compatible microcontroller
- NeoPixel LED strip (WS2812B or compatible)
- Appropriate power supply for your LED strip
## Configuration
Edit `NeoPixelConfig.h` to configure your setup:
```cpp
static constexpr int DEFAULT_PIN = 2;
static constexpr int DEFAULT_LENGTH = 8;
static constexpr int DEFAULT_BRIGHTNESS = 100;
static constexpr int DEFAULT_UPDATE_INTERVAL = 100;
static constexpr int DEFAULT_COLOR = 0xFF0000; // Red
```
## API Endpoints
### Status Information
- `GET /api/neopattern/status` - Get current status and configuration
- `GET /api/neopattern/patterns` - List available patterns
### Pattern Control
- `POST /api/neopattern` - Control pattern parameters
- `pattern`: Pattern name (none, rainbow_cycle, theater_chase, color_wipe, scanner, fade, fire)
- `color`: Primary color (hex string like "#FF0000" or "0xFF0000")
- `color2`: Secondary color for two-color patterns
- `brightness`: Brightness level (0-255)
- `total_steps`: Number of steps for patterns
- `direction`: Pattern direction (forward, reverse)
- `interval`: Update interval in milliseconds
### State Management
- `POST /api/neopattern/state` - Set complete state via JSON
## Example API Usage
### Set a rainbow cycle pattern
```bash
curl -X POST http://esp32-ip/api/neopattern \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "pattern=rainbow_cycle&interval=50"
```
### Set custom colors for theater chase
```bash
curl -X POST http://esp32-ip/api/neopattern \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "pattern=theater_chase&color=0xFF0000&color2=0x0000FF&brightness=150"
```
### Set complete state via JSON
```bash
curl -X POST http://esp32-ip/api/neopattern/state \
-H "Content-Type: application/json" \
-d '{
"pattern": 3,
"color": 16711680,
"color2": 255,
"totalSteps": 32,
"brightness": 128
}'
```
## Available Patterns
1. **none** - Static color display
2. **rainbow_cycle** - Smooth rainbow cycling
3. **theater_chase** - Moving dots with two colors
4. **color_wipe** - Progressive color filling
5. **scanner** - Scanning light effect
6. **fade** - Smooth color transition
7. **fire** - Fire simulation effect
## Building and Flashing
1. Install PlatformIO
2. Configure your `platformio.ini` to include the Spore framework
3. Build and upload:
```bash
pio run -t upload
```
## Integration with Spore Framework
This service integrates with the Spore framework by:
- Extending the `Service` base class
- Using `TaskManager` for pattern updates
- Registering REST API endpoints with `ApiServer`
- Following Spore's logging and configuration patterns
The service automatically registers itself with the Spore framework and provides all functionality through the standard Spore API infrastructure.
## Customization
To add new patterns:
1. Add the pattern enum to `NeoPatternService.h`
2. Implement the pattern logic in `NeoPattern.cpp`
3. Add the pattern updater to `registerPatterns()` in `NeoPatternService.cpp`
4. Update the pattern mapping in `nameToPatternMap`
## Troubleshooting
- **LEDs not lighting**: Check wiring and power supply
- **Patterns not updating**: Verify the update interval and task registration
- **API not responding**: Check network configuration and Spore framework setup
- **Memory issues**: Reduce LED count or pattern complexity
## Dependencies
- Spore Framework
- Adafruit NeoPixel library
- ArduinoJson
- ESP32 Arduino Core

View File

@@ -1,31 +0,0 @@
#ifndef __DEVICE_CONFIG__
#define __DEVICE_CONFIG__
// Scheduler config
#define _TASK_SLEEP_ON_IDLE_RUN
#define _TASK_STD_FUNCTION
#define _TASK_PRIORITY
// Chip config
#define SPROCKET_TYPE "SPROCKET"
#define SERIAL_BAUD_RATE 115200
#define STARTUP_DELAY 1000
// network config
#define SPROCKET_MODE 1
#define WIFI_CHANNEL 11
#define AP_SSID "sprocket"
#define AP_PASSWORD "th3r31sn0sp00n"
#define STATION_SSID "MyAP"
#define STATION_PASSWORD "th3r31sn0sp00n"
#define HOSTNAME "sprocket"
#define CONNECT_TIMEOUT 10000
// NeoPixel conig
#define LED_STRIP_PIN D2
#define LED_STRIP_LENGTH 8
#define LED_STRIP_BRIGHTNESS 48
#define LED_STRIP_UPDATE_INTERVAL 200
#define LED_STRIP_DEFAULT_COLOR 100
#endif

View File

@@ -2,25 +2,31 @@
#include "spore/Spore.h" #include "spore/Spore.h"
#include "spore/util/Logging.h" #include "spore/util/Logging.h"
#include "NeoPatternService.h" #include "NeoPatternService.h"
#include "NeoPixelConfig.h"
#ifndef LED_STRIP_PIN // Configuration constants
#define LED_STRIP_PIN 2 #ifndef NEOPIXEL_PIN
#define NEOPIXEL_PIN 2
#endif #endif
#ifndef LED_STRIP_LENGTH #ifndef NEOPIXEL_LENGTH
#define LED_STRIP_LENGTH 8 #define NEOPIXEL_LENGTH 8
#endif #endif
#ifndef LED_STRIP_TYPE #ifndef NEOPIXEL_BRIGHTNESS
#define LED_STRIP_TYPE (NEO_GRB + NEO_KHZ800) #define NEOPIXEL_BRIGHTNESS 100
#endif
#ifndef NEOPIXEL_UPDATE_INTERVAL
#define NEOPIXEL_UPDATE_INTERVAL 100
#endif #endif
// Create Spore instance with custom labels // Create Spore instance with custom labels
Spore spore({ Spore spore({
{"app", "neopattern"}, {"app", "neopattern"},
{"device", "light"}, {"role", "led"},
{"pixels", String(LED_STRIP_LENGTH)}, {"pixels", String(NEOPIXEL_LENGTH)},
{"pin", String(LED_STRIP_PIN)} {"pin", String(NEOPIXEL_PIN)}
}); });
// Create custom service // Create custom service
@@ -30,14 +36,22 @@ void setup() {
// Initialize the Spore framework // Initialize the Spore framework
spore.setup(); spore.setup();
// Create configuration
NeoPixelConfig config(
NEOPIXEL_PIN,
NEOPIXEL_LENGTH,
NEOPIXEL_BRIGHTNESS,
NEOPIXEL_UPDATE_INTERVAL
);
// Create and add custom service // Create and add custom service
neoPatternService = new NeoPatternService(spore.getTaskManager(), LED_STRIP_LENGTH, LED_STRIP_PIN, LED_STRIP_TYPE); neoPatternService = new NeoPatternService(spore.getTaskManager(), config);
spore.addService(neoPatternService); spore.addService(neoPatternService);
// Start the API server and complete initialization // Start the API server and complete initialization
spore.begin(); spore.begin();
LOG_INFO( "Main", "NeoPattern service registered and ready!"); LOG_INFO("Main", "NeoPattern service registered and ready!");
} }
void loop() { void loop() {

View File

@@ -1,293 +0,0 @@
#include "NeoPixelService.h"
#include "spore/core/ApiServer.h"
#include "spore/util/Logging.h"
// Wheel helper: map 0-255 to RGB rainbow
static uint32_t colorWheel(Adafruit_NeoPixel& strip, uint8_t pos) {
pos = 255 - pos;
if (pos < 85) {
return strip.Color(255 - pos * 3, 0, pos * 3);
}
if (pos < 170) {
pos -= 85;
return strip.Color(0, pos * 3, 255 - pos * 3);
}
pos -= 170;
return strip.Color(pos * 3, 255 - pos * 3, 0);
}
NeoPixelService::NeoPixelService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, neoPixelType type)
: taskManager(taskMgr),
strip(numPixels, pin, type),
currentPattern(Pattern::Off),
updateIntervalMs(20),
lastUpdateMs(0),
wipeIndex(0),
wipeColor(strip.Color(255, 0, 0)),
rainbowJ(0),
cycleJ(0),
chaseJ(0),
chaseQ(0),
chasePhaseOn(true),
chaseColor(strip.Color(127, 127, 127)),
brightness(50) {
strip.begin();
strip.setBrightness(brightness);
strip.show();
registerPatterns();
registerTasks();
}
void NeoPixelService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/neopixel/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/neopixel/patterns", HTTP_GET,
[this](AsyncWebServerRequest* request) { handlePatternsRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/neopixel", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{String("pattern"), false, String("body"), String("string"), patternNamesVector()},
ParamSpec{String("interval_ms"), false, String("body"), String("number"), {}, String("100")},
ParamSpec{String("brightness"), false, String("body"), String("number"), {}, String("50")},
ParamSpec{String("color"), false, String("body"), String("color"), {}},
ParamSpec{String("color2"), false, String("body"), String("color"), {}},
ParamSpec{String("r"), false, String("body"), String("number"), {}},
ParamSpec{String("g"), false, String("body"), String("number"), {}},
ParamSpec{String("b"), false, String("body"), String("number"), {}},
ParamSpec{String("r2"), false, String("body"), String("number"), {}},
ParamSpec{String("g2"), false, String("body"), String("number"), {}},
ParamSpec{String("b2"), false, String("body"), String("number"), {}},
ParamSpec{String("total_steps"), false, String("body"), String("number"), {}},
ParamSpec{String("direction"), false, String("body"), String("string"), {String("forward"), String("reverse")}}
});
}
void NeoPixelService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
doc["pin"] = strip.getPin();
doc["count"] = strip.numPixels();
doc["interval_ms"] = updateIntervalMs;
doc["brightness"] = brightness;
doc["pattern"] = currentPatternName();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPixelService::handlePatternsRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
JsonArray arr = doc.to<JsonArray>();
for (auto& kv : patternUpdaters) arr.add(kv.first);
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPixelService::handleControlRequest(AsyncWebServerRequest* request) {
if (request->hasParam("pattern", true)) {
String name = request->getParam("pattern", true)->value();
setPatternByName(name);
}
if (request->hasParam("interval_ms", true)) {
unsigned long v = request->getParam("interval_ms", true)->value().toInt();
if (v < 1) v = 1;
updateIntervalMs = v;
taskManager.setTaskInterval("neopixel_update", updateIntervalMs);
}
if (request->hasParam("brightness", true)) {
int b = request->getParam("brightness", true)->value().toInt();
if (b < 0) b = 0;
if (b > 255) b = 255;
setBrightness((uint8_t)b);
}
// Accept packed color ints or r,g,b triplets
if (request->hasParam("color", true)) {
wipeColor = (uint32_t)strtoul(request->getParam("color", true)->value().c_str(), nullptr, 0);
chaseColor = wipeColor;
}
if (request->hasParam("r", true) || request->hasParam("g", true) || request->hasParam("b", true)) {
int r = request->hasParam("r", true) ? request->getParam("r", true)->value().toInt() : 0;
int g = request->hasParam("g", true) ? request->getParam("g", true)->value().toInt() : 0;
int b = request->hasParam("b", true) ? request->getParam("b", true)->value().toInt() : 0;
wipeColor = strip.Color(r, g, b);
chaseColor = strip.Color(r / 2, g / 2, b / 2); // dimmer for chase
}
JsonDocument resp;
resp["ok"] = true;
resp["pattern"] = currentPatternName();
resp["interval_ms"] = updateIntervalMs;
resp["brightness"] = brightness;
String json;
serializeJson(resp, json);
request->send(200, "application/json", json);
}
void NeoPixelService::setBrightness(uint8_t b) {
brightness = b;
strip.setBrightness(brightness);
strip.show();
}
void NeoPixelService::registerTasks() {
taskManager.registerTask("neopixel_update", updateIntervalMs, [this]() { update(); });
taskManager.registerTask("neopixel_status_print", 10000, [this]() {
Serial.printf("[NeoPixel] pattern=%s interval=%lu ms brightness=%u\n",
currentPatternName().c_str(), updateIntervalMs, brightness);
});
}
void NeoPixelService::registerPatterns() {
patternUpdaters["off"] = [this]() { updateOff(); };
patternUpdaters["color_wipe"] = [this]() { updateColorWipe(); };
patternUpdaters["rainbow"] = [this]() { updateRainbow(); };
patternUpdaters["rainbow_cycle"] = [this]() { updateRainbowCycle(); };
patternUpdaters["theater_chase"] = [this]() { updateTheaterChase(); };
patternUpdaters["theater_chase_rainbow"] = [this]() { updateTheaterChaseRainbow(); };
}
std::vector<String> NeoPixelService::patternNamesVector() const {
std::vector<String> v;
v.reserve(patternUpdaters.size());
for (const auto& kv : patternUpdaters) v.push_back(kv.first);
return v;
}
String NeoPixelService::currentPatternName() const {
switch (currentPattern) {
case Pattern::Off: return String("off");
case Pattern::ColorWipe: return String("color_wipe");
case Pattern::Rainbow: return String("rainbow");
case Pattern::RainbowCycle: return String("rainbow_cycle");
case Pattern::TheaterChase: return String("theater_chase");
case Pattern::TheaterChaseRainbow: return String("theater_chase_rainbow");
}
return String("off");
}
NeoPixelService::Pattern NeoPixelService::nameToPattern(const String& name) const {
if (name.equalsIgnoreCase("color_wipe")) return Pattern::ColorWipe;
if (name.equalsIgnoreCase("rainbow")) return Pattern::Rainbow;
if (name.equalsIgnoreCase("rainbow_cycle")) return Pattern::RainbowCycle;
if (name.equalsIgnoreCase("theater_chase")) return Pattern::TheaterChase;
if (name.equalsIgnoreCase("theater_chase_rainbow")) return Pattern::TheaterChaseRainbow;
return Pattern::Off;
}
void NeoPixelService::setPatternByName(const String& name) {
Pattern p = nameToPattern(name);
resetStateForPattern(p);
}
void NeoPixelService::resetStateForPattern(Pattern p) {
strip.clear();
strip.show();
wipeIndex = 0;
rainbowJ = 0;
cycleJ = 0;
chaseJ = 0;
chaseQ = 0;
chasePhaseOn = true;
lastUpdateMs = 0;
currentPattern = p;
}
void NeoPixelService::update() {
unsigned long now = millis();
if (now - lastUpdateMs < updateIntervalMs) return;
lastUpdateMs = now;
const String name = currentPatternName();
auto it = patternUpdaters.find(name);
if (it != patternUpdaters.end()) {
it->second();
} else {
updateOff();
}
}
void NeoPixelService::updateOff() {
strip.clear();
strip.show();
}
void NeoPixelService::updateColorWipe() {
if (wipeIndex < strip.numPixels()) {
strip.setPixelColor(wipeIndex, wipeColor);
++wipeIndex;
strip.show();
} else {
strip.clear();
wipeIndex = 0;
}
}
void NeoPixelService::updateRainbow() {
for (uint16_t i = 0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, colorWheel(strip, (i + rainbowJ) & 255));
}
strip.show();
rainbowJ = (rainbowJ + 1) & 0xFF;
}
void NeoPixelService::updateRainbowCycle() {
for (uint16_t i = 0; i < strip.numPixels(); i++) {
uint8_t pos = ((i * 256 / strip.numPixels()) + cycleJ) & 0xFF;
strip.setPixelColor(i, colorWheel(strip, pos));
}
strip.show();
cycleJ = (cycleJ + 1) & 0xFF;
}
void NeoPixelService::updateTheaterChase() {
if (chasePhaseOn) {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, chaseColor);
}
strip.show();
chasePhaseOn = false;
} else {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, 0);
}
strip.show();
chasePhaseOn = true;
chaseQ = (chaseQ + 1) % 3;
chaseJ = (chaseJ + 1) % 10;
}
}
void NeoPixelService::updateTheaterChaseRainbow() {
if (chasePhaseOn) {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, colorWheel(strip, (idx + chaseJ) % 255));
}
strip.show();
chasePhaseOn = false;
} else {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, 0);
}
strip.show();
chasePhaseOn = true;
chaseQ = (chaseQ + 1) % 3;
chaseJ = (chaseJ + 1) & 0xFF;
}
}

View File

@@ -1,67 +0,0 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/TaskManager.h"
#include <Adafruit_NeoPixel.h>
#include <map>
#include <vector>
class NeoPixelService : public Service {
public:
enum class Pattern {
Off,
ColorWipe,
Rainbow,
RainbowCycle,
TheaterChase,
TheaterChaseRainbow
};
NeoPixelService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, neoPixelType type);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "NeoPixel"; }
void setPatternByName(const String& name);
void setBrightness(uint8_t b);
private:
void registerTasks();
void registerPatterns();
std::vector<String> patternNamesVector() const;
String currentPatternName() const;
Pattern nameToPattern(const String& name) const;
void resetStateForPattern(Pattern p);
void update();
// Pattern updaters
void updateOff();
void updateColorWipe();
void updateRainbow();
void updateRainbowCycle();
void updateTheaterChase();
void updateTheaterChaseRainbow();
// Handlers
void handleStatusRequest(AsyncWebServerRequest* request);
void handlePatternsRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
TaskManager& taskManager;
Adafruit_NeoPixel strip;
std::map<String, std::function<void()>> patternUpdaters;
Pattern currentPattern;
unsigned long updateIntervalMs;
unsigned long lastUpdateMs;
// State for patterns
uint16_t wipeIndex;
uint32_t wipeColor;
uint8_t rainbowJ;
uint8_t cycleJ;
int chaseJ;
int chaseQ;
bool chasePhaseOn;
uint32_t chaseColor;
uint8_t brightness;
};

View File

@@ -1,46 +0,0 @@
#include <Arduino.h>
#include "spore/Spore.h"
#include "spore/util/Logging.h"
#include "NeoPixelService.h"
#ifndef NEOPIXEL_PIN
#define NEOPIXEL_PIN 2
#endif
#ifndef NEOPIXEL_COUNT
#define NEOPIXEL_COUNT 16
#endif
#ifndef NEOPIXEL_TYPE
#define NEOPIXEL_TYPE (NEO_GRB + NEO_KHZ800)
#endif
// Create Spore instance with custom labels
Spore spore({
{"app", "neopixel"},
{"device", "light"},
{"pixels", String(NEOPIXEL_COUNT)},
{"pin", String(NEOPIXEL_PIN)}
});
// Create custom service
NeoPixelService* neoPixelService = nullptr;
void setup() {
// Initialize the Spore framework
spore.setup();
// Create and add custom service
neoPixelService = new NeoPixelService(spore.getTaskManager(), NEOPIXEL_COUNT, NEOPIXEL_PIN, NEOPIXEL_TYPE);
spore.addService(neoPixelService);
// Start the API server and complete initialization
spore.begin();
LOG_INFO( "Main", "NeoPixel service registered and ready!");
}
void loop() {
// Run the Spore framework loop
spore.loop();
}

View File

@@ -1,82 +0,0 @@
# Static Web Server Example
This example demonstrates how to serve static HTML files from LittleFS using the Spore framework.
## Features
- Serves static files from LittleFS filesystem
- Beautiful web interface with real-time status updates
- Responsive design that works on mobile and desktop
- Automatic API endpoint discovery and status monitoring
## Files
- `main.cpp` - Main application entry point
- `data/index.html` - Web interface (served from LittleFS)
## Web Interface
The web interface provides:
- **Node Status** - Shows uptime and system information
- **Network Status** - Displays WiFi connection status
- **Task Status** - Shows active background tasks
- **Cluster Status** - Displays cluster membership
- **API Links** - Quick access to all available API endpoints
## Building and Flashing
### Build for D1 Mini (recommended for web interface)
```bash
# Build the firmware
pio run -e d1_mini_static_web
# Flash to device
pio run -e d1_mini_static_web -t upload
```
### Upload Files to LittleFS
After flashing the firmware, you need to upload the HTML files to the LittleFS filesystem:
```bash
# Upload data directory to LittleFS
pio run -e d1_mini_static_web -t uploadfs
```
## Usage
1. Flash the firmware to your ESP8266 device
2. Upload the data files to LittleFS
3. Connect to the device's WiFi network
4. Open a web browser and navigate to `http://<device-ip>/`
5. The web interface will load and display real-time status information
## API Endpoints
The web interface automatically discovers and displays links to all available API endpoints:
- `/api/node/status` - Node status and system information
- `/api/network/status` - Network and WiFi status
- `/api/tasks/status` - Task management status
- `/api/cluster/members` - Cluster membership
- `/api/node/endpoints` - Complete API endpoint list
## Customization
To customize the web interface:
1. Modify `data/index.html` with your desired content
2. Add additional static files (CSS, JS, images) to the `data/` directory
3. Re-upload the files using `pio run -e d1_mini_static_web -t uploadfs`
## File Structure
```
data/
├── index.html # Main web interface
└── (other static files) # Additional web assets
```
The StaticFileService automatically serves files from the LittleFS root directory, so any files placed in the `data/` directory will be accessible via HTTP.

View File

@@ -1,22 +0,0 @@
#include <Arduino.h>
#include "spore/Spore.h"
#include "spore/util/Logging.h"
// Create Spore instance
Spore spore;
void setup() {
// Initialize Spore framework
spore.setup();
// Start the framework (this will start the API server with static file serving)
spore.begin();
LOG_INFO( "Example", "Static web server started!");
LOG_INFO( "Example", "Visit http://<node-ip>/ to see the web interface");
}
void loop() {
// Let Spore handle the main loop
spore.loop();
}

View File

@@ -11,6 +11,7 @@
#include "core/TaskManager.h" #include "core/TaskManager.h"
#include "Service.h" #include "Service.h"
#include "util/Logging.h" #include "util/Logging.h"
#include "util/CpuUsage.h"
class Spore { class Spore {
public: public:
@@ -34,6 +35,11 @@ public:
ClusterManager& getCluster() { return cluster; } ClusterManager& getCluster() { return cluster; }
ApiServer& getApiServer() { return apiServer; } ApiServer& getApiServer() { return apiServer; }
// CPU usage monitoring
CpuUsage& getCpuUsage() { return cpuUsage; }
float getCurrentCpuUsage() const { return cpuUsage.getCpuUsage(); }
float getAverageCpuUsage() const { return cpuUsage.getAverageCpuUsage(); }
private: private:
void initializeCore(); void initializeCore();
@@ -45,6 +51,7 @@ private:
TaskManager taskManager; TaskManager taskManager;
ClusterManager cluster; ClusterManager cluster;
ApiServer apiServer; ApiServer apiServer;
CpuUsage cpuUsage;
std::vector<std::shared_ptr<Service>> services; std::vector<std::shared_ptr<Service>> services;
bool initialized; bool initialized;

View File

@@ -11,6 +11,7 @@
#include "spore/types/NodeInfo.h" #include "spore/types/NodeInfo.h"
#include "spore/core/TaskManager.h" #include "spore/core/TaskManager.h"
#include "spore/types/ApiTypes.h" #include "spore/types/ApiTypes.h"
#include "spore/util/Logging.h"
class Service; // Forward declaration class Service; // Forward declaration
@@ -19,15 +20,17 @@ public:
ApiServer(NodeContext& ctx, TaskManager& taskMgr, uint16_t port = 80); ApiServer(NodeContext& ctx, TaskManager& taskMgr, uint16_t port = 80);
void begin(); void begin();
void addService(Service& service); void addService(Service& service);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler, void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler); const String& serviceName = "unknown");
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const std::vector<ParamSpec>& params);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler, void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler, std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const std::vector<ParamSpec>& params); const String& serviceName = "unknown");
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const std::vector<ParamSpec>& params, const String& serviceName = "unknown");
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const std::vector<ParamSpec>& params, const String& serviceName = "unknown");
// Static file serving // Static file serving
void serveStatic(const String& uri, fs::FS& fs, const String& path, const String& cache_header = ""); void serveStatic(const String& uri, fs::FS& fs, const String& path, const String& cache_header = "");

View File

@@ -0,0 +1,51 @@
#pragma once
#include "spore/Service.h"
#include "spore/util/CpuUsage.h"
#include <functional>
class MonitoringService : public Service {
public:
MonitoringService(CpuUsage& cpuUsage);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Monitoring"; }
// System resource information
struct SystemResources {
// CPU information
float currentCpuUsage;
float averageCpuUsage;
float maxCpuUsage;
float minCpuUsage;
unsigned long measurementCount;
bool isMeasuring;
// Memory information
size_t freeHeap;
size_t totalHeap;
size_t minFreeHeap;
size_t maxAllocHeap;
size_t heapFragmentation;
// Filesystem information
size_t totalBytes;
size_t usedBytes;
size_t freeBytes;
float usagePercent;
// System uptime
unsigned long uptimeMs;
unsigned long uptimeSeconds;
};
// Get current system resources
SystemResources getSystemResources() const;
private:
void handleResourcesRequest(AsyncWebServerRequest* request);
// Helper methods
size_t calculateHeapFragmentation() const;
void getFilesystemInfo(size_t& totalBytes, size_t& usedBytes) const;
CpuUsage& cpuUsage;
};

View File

@@ -0,0 +1,114 @@
#pragma once
#include "spore/util/JsonSerializable.h"
#include "spore/util/Logging.h"
#include <ArduinoJson.h>
namespace spore {
namespace types {
/**
* Base class for API responses that can be serialized to JSON
* Handles complete JsonDocument creation and serialization
*/
class ApiResponse {
protected:
mutable JsonDocument doc;
public:
virtual ~ApiResponse() = default;
/**
* Get the complete JSON string representation of this response
* @return JSON string ready to send as HTTP response
*/
virtual String toJsonString() const {
String json;
serializeJson(doc, json);
return json;
}
/**
* Get the JsonDocument for direct manipulation if needed
* @return Reference to the internal JsonDocument
*/
JsonDocument& getDocument() { return doc; }
const JsonDocument& getDocument() const { return doc; }
/**
* Clear the document and reset for reuse
*/
virtual void clear() {
doc.clear();
}
};
/**
* Base class for API responses that contain a collection of serializable items
*/
template<typename ItemType>
class CollectionResponse : public ApiResponse {
protected:
String collectionKey;
public:
explicit CollectionResponse(const String& key) : collectionKey(key) {}
/**
* Add a serializable item to the collection
* @param item The serializable item to add
*/
void addItem(const util::JsonSerializable& item) {
// Ensure the array exists and get a reference to it
if (!doc[collectionKey].is<JsonArray>()) {
doc[collectionKey] = JsonArray();
}
JsonArray arr = doc[collectionKey].as<JsonArray>();
JsonObject obj = arr.add<JsonObject>();
item.toJson(obj);
}
/**
* Add a serializable item to the collection (move version)
* @param item The serializable item to add
*/
void addItem(util::JsonSerializable&& item) {
// Ensure the array exists and get a reference to it
if (!doc[collectionKey].is<JsonArray>()) {
doc[collectionKey] = JsonArray();
}
JsonArray arr = doc[collectionKey].as<JsonArray>();
JsonObject obj = arr.add<JsonObject>();
item.toJson(obj);
}
/**
* Add multiple items from a container
* @param items Container of serializable items
*/
template<typename Container>
void addItems(const Container& items) {
// Ensure the array exists and get a reference to it
if (!doc[collectionKey].is<JsonArray>()) {
doc[collectionKey] = JsonArray();
}
JsonArray arr = doc[collectionKey].as<JsonArray>();
for (const auto& item : items) {
JsonObject obj = arr.add<JsonObject>();
item.toJson(obj);
}
}
/**
* Get the current number of items in the collection
* @return Number of items
*/
size_t getItemCount() const {
if (doc[collectionKey].is<JsonArray>()) {
return doc[collectionKey].as<JsonArray>().size();
}
return 0;
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,47 @@
#pragma once
#include "ApiResponse.h"
#include "NodeInfoSerializable.h"
#include <map>
namespace spore {
namespace types {
/**
* Response class for cluster members endpoint
* Handles complete JSON document creation for cluster member data
*/
class ClusterMembersResponse : public CollectionResponse<NodeInfoSerializable> {
public:
ClusterMembersResponse() : CollectionResponse("members") {}
/**
* Add a single node to the response
* @param node The NodeInfo to add
*/
void addNode(const NodeInfo& node) {
addItem(NodeInfoSerializable(const_cast<NodeInfo&>(node)));
}
/**
* Add multiple nodes from a member list
* @param memberList Map of hostname to NodeInfo
*/
void addNodes(const std::map<String, NodeInfo>& memberList) {
for (const auto& pair : memberList) {
addNode(pair.second);
}
}
/**
* Add nodes from a pointer to member list
* @param memberList Pointer to map of hostname to NodeInfo
*/
void addNodes(const std::map<String, NodeInfo>* memberList) {
if (memberList) {
addNodes(*memberList);
}
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,76 @@
#pragma once
#include "ApiTypes.h"
#include "spore/util/JsonSerializable.h"
#include <ArduinoJson.h>
namespace spore {
namespace types {
/**
* Serializable wrapper for EndpointInfo that implements JsonSerializable interface
* Handles conversion between EndpointInfo struct and JSON representation
*/
class EndpointInfoSerializable : public util::JsonSerializable {
private:
const EndpointInfo& endpoint;
public:
explicit EndpointInfoSerializable(const EndpointInfo& ep) : endpoint(ep) {}
/**
* Serialize EndpointInfo to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["uri"] = endpoint.uri;
obj["method"] = endpoint.method;
// Add parameters if present
if (!endpoint.params.empty()) {
JsonArray paramsArr = obj["params"].to<JsonArray>();
for (const auto& param : endpoint.params) {
JsonObject paramObj = paramsArr.add<JsonObject>();
paramObj["name"] = param.name;
paramObj["location"] = param.location;
paramObj["required"] = param.required;
paramObj["type"] = param.type;
if (!param.values.empty()) {
JsonArray valuesArr = paramObj["values"].to<JsonArray>();
for (const auto& value : param.values) {
valuesArr.add(value);
}
}
if (param.defaultValue.length() > 0) {
paramObj["default"] = param.defaultValue;
}
}
}
}
/**
* Deserialize EndpointInfo from JsonObject
*/
void fromJson(const JsonObject& obj) override {
// Note: This would require modifying the EndpointInfo struct to be mutable
// For now, this is a placeholder as EndpointInfo is typically read-only
// in the context where this serialization is used
}
};
/**
* Convenience function to create a JsonArray from a collection of EndpointInfo objects
*/
template<typename Container>
JsonArray endpointInfoToJsonArray(JsonDocument& doc, const Container& endpoints) {
JsonArray arr = doc.to<JsonArray>();
for (const auto& endpoint : endpoints) {
EndpointInfoSerializable serializable(endpoint);
JsonObject obj = arr.add<JsonObject>();
serializable.toJson(obj);
}
return arr;
}
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,141 @@
#pragma once
#include "NodeInfo.h"
#include "ApiTypes.h"
#include "spore/util/JsonSerializable.h"
#include <ArduinoJson.h>
namespace spore {
namespace types {
/**
* Serializable wrapper for NodeInfo that implements JsonSerializable interface
* Handles conversion between NodeInfo struct and JSON representation
*/
class NodeInfoSerializable : public util::JsonSerializable {
private:
NodeInfo& nodeInfo;
public:
explicit NodeInfoSerializable(NodeInfo& node) : nodeInfo(node) {}
/**
* Serialize NodeInfo to JsonObject
* Maps all NodeInfo fields to appropriate JSON structure
*/
void toJson(JsonObject& obj) const override {
obj["hostname"] = nodeInfo.hostname;
obj["ip"] = nodeInfo.ip.toString();
obj["lastSeen"] = nodeInfo.lastSeen;
obj["latency"] = nodeInfo.latency;
obj["status"] = statusToStr(nodeInfo.status);
// Serialize resources
JsonObject resources = obj["resources"].to<JsonObject>();
resources["freeHeap"] = nodeInfo.resources.freeHeap;
resources["chipId"] = nodeInfo.resources.chipId;
resources["sdkVersion"] = nodeInfo.resources.sdkVersion;
resources["cpuFreqMHz"] = nodeInfo.resources.cpuFreqMHz;
resources["flashChipSize"] = nodeInfo.resources.flashChipSize;
// Serialize labels if present
if (!nodeInfo.labels.empty()) {
JsonObject labels = obj["labels"].to<JsonObject>();
for (const auto& kv : nodeInfo.labels) {
labels[kv.first.c_str()] = kv.second;
}
}
// Serialize endpoints if present
if (!nodeInfo.endpoints.empty()) {
JsonArray endpoints = obj["api"].to<JsonArray>();
for (const auto& endpoint : nodeInfo.endpoints) {
JsonObject endpointObj = endpoints.add<JsonObject>();
endpointObj["uri"] = endpoint.uri;
endpointObj["method"] = endpoint.method;
}
}
}
/**
* Deserialize NodeInfo from JsonObject
* Populates NodeInfo fields from JSON structure
*/
void fromJson(const JsonObject& obj) override {
nodeInfo.hostname = obj["hostname"].as<String>();
// Parse IP address
const char* ipStr = obj["ip"];
if (ipStr) {
nodeInfo.ip.fromString(ipStr);
}
nodeInfo.lastSeen = obj["lastSeen"].as<unsigned long>();
nodeInfo.latency = obj["latency"].as<unsigned long>();
// Parse status
const char* statusStr = obj["status"];
if (statusStr) {
if (strcmp(statusStr, "ACTIVE") == 0) {
nodeInfo.status = NodeInfo::ACTIVE;
} else if (strcmp(statusStr, "INACTIVE") == 0) {
nodeInfo.status = NodeInfo::INACTIVE;
} else if (strcmp(statusStr, "DEAD") == 0) {
nodeInfo.status = NodeInfo::DEAD;
}
}
// Parse resources
if (obj["resources"].is<JsonObject>()) {
JsonObject resources = obj["resources"].as<JsonObject>();
nodeInfo.resources.freeHeap = resources["freeHeap"].as<uint32_t>();
nodeInfo.resources.chipId = resources["chipId"].as<uint32_t>();
nodeInfo.resources.sdkVersion = resources["sdkVersion"].as<String>();
nodeInfo.resources.cpuFreqMHz = resources["cpuFreqMHz"].as<uint32_t>();
nodeInfo.resources.flashChipSize = resources["flashChipSize"].as<uint32_t>();
}
// Parse labels
nodeInfo.labels.clear();
if (obj["labels"].is<JsonObject>()) {
JsonObject labels = obj["labels"].as<JsonObject>();
for (JsonPair kvp : labels) {
nodeInfo.labels[kvp.key().c_str()] = kvp.value().as<String>();
}
}
// Parse endpoints
nodeInfo.endpoints.clear();
if (obj["api"].is<JsonArray>()) {
JsonArray endpoints = obj["api"].as<JsonArray>();
for (JsonObject endpointObj : endpoints) {
EndpointInfo endpoint;
endpoint.uri = endpointObj["uri"].as<String>();
endpoint.method = endpointObj["method"].as<int>();
endpoint.isLocal = false;
endpoint.serviceName = "remote";
nodeInfo.endpoints.push_back(std::move(endpoint));
}
}
}
};
/**
* Convenience function to create a JsonArray from a collection of NodeInfo objects
* @param doc The JsonDocument to create the array in
* @param nodes Collection of NodeInfo objects
* @return A JsonArray containing all serialized NodeInfo objects
*/
template<typename Container>
JsonArray nodeInfoToJsonArray(JsonDocument& doc, const Container& nodes) {
JsonArray arr = doc.to<JsonArray>();
for (const auto& pair : nodes) {
const NodeInfo& node = pair.second;
NodeInfoSerializable serializable(const_cast<NodeInfo&>(node));
JsonObject obj = arr.add<JsonObject>();
serializable.toJson(obj);
}
return arr;
}
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,102 @@
#pragma once
#include "ApiResponse.h"
#include "EndpointInfoSerializable.h"
#include "NodeInfo.h"
#include "spore/util/Logging.h"
#include <vector>
namespace spore {
namespace types {
/**
* Response class for node status endpoint
* Handles complete JSON document creation for node status data
*/
class NodeStatusResponse : public ApiResponse {
public:
/**
* Set basic system information
*/
void setSystemInfo() {
doc["freeHeap"] = ESP.getFreeHeap();
doc["chipId"] = ESP.getChipId();
doc["sdkVersion"] = ESP.getSdkVersion();
doc["cpuFreqMHz"] = ESP.getCpuFreqMHz();
doc["flashChipSize"] = ESP.getFlashChipSize();
}
/**
* Add labels to the response
* @param labels Map of label key-value pairs
*/
void addLabels(const std::map<String, String>& labels) {
if (!labels.empty()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>();
for (const auto& kv : labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
}
}
/**
* Build complete response with system info and labels
* @param labels Optional labels to include
*/
void buildCompleteResponse(const std::map<String, String>& labels = {}) {
setSystemInfo();
addLabels(labels);
}
};
/**
* Response class for node endpoints endpoint
* Handles complete JSON document creation for endpoint data
*/
class NodeEndpointsResponse : public CollectionResponse<EndpointInfoSerializable> {
public:
NodeEndpointsResponse() : CollectionResponse("endpoints") {}
/**
* Add a single endpoint to the response
* @param endpoint The EndpointInfo to add
*/
void addEndpoint(const EndpointInfo& endpoint) {
addItem(EndpointInfoSerializable(endpoint));
}
/**
* Add multiple endpoints from a container
* @param endpoints Container of EndpointInfo objects
*/
void addEndpoints(const std::vector<EndpointInfo>& endpoints) {
for (const auto& endpoint : endpoints) {
addEndpoint(endpoint);
}
}
};
/**
* Response class for simple status operations (update, restart)
* Handles simple JSON responses for node operations
*/
class NodeOperationResponse : public ApiResponse {
public:
/**
* Set success response
* @param status Status message
*/
void setSuccess(const String& status) {
doc["status"] = status;
}
/**
* Set error response
* @param status Error status message
*/
void setError(const String& status) {
doc["status"] = status;
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,99 @@
#pragma once
#include "spore/util/JsonSerializable.h"
#include <ArduinoJson.h>
#include <Arduino.h>
namespace spore {
namespace types {
/**
* Serializable wrapper for task information that implements JsonSerializable interface
* Handles conversion between task data and JSON representation
*/
class TaskInfoSerializable : public util::JsonSerializable {
private:
String taskName;
const JsonObject& taskData;
public:
TaskInfoSerializable(const String& name, const JsonObject& data)
: taskName(name), taskData(data) {}
TaskInfoSerializable(const std::string& name, const JsonObject& data)
: taskName(name.c_str()), taskData(data) {}
/**
* Serialize task info to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["name"] = taskName;
obj["interval"] = taskData["interval"];
obj["enabled"] = taskData["enabled"];
obj["running"] = taskData["running"];
obj["autoStart"] = taskData["autoStart"];
}
/**
* Deserialize task info from JsonObject
* Note: This is read-only for task status, so fromJson is not implemented
*/
void fromJson(const JsonObject& obj) override {
// Task info is typically read-only in this context
// Implementation would go here if needed
}
};
/**
* Serializable wrapper for system information
*/
class SystemInfoSerializable : public util::JsonSerializable {
public:
/**
* Serialize system info to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["freeHeap"] = ESP.getFreeHeap();
obj["uptime"] = millis();
}
/**
* Deserialize system info from JsonObject
* Note: System info is typically read-only, so fromJson is not implemented
*/
void fromJson(const JsonObject& obj) override {
// System info is typically read-only
// Implementation would go here if needed
}
};
/**
* Serializable wrapper for task summary information
*/
class TaskSummarySerializable : public util::JsonSerializable {
private:
size_t totalTasks;
size_t activeTasks;
public:
TaskSummarySerializable(size_t total, size_t active)
: totalTasks(total), activeTasks(active) {}
/**
* Serialize task summary to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["totalTasks"] = totalTasks;
obj["activeTasks"] = activeTasks;
}
/**
* Deserialize task summary from JsonObject
*/
void fromJson(const JsonObject& obj) override {
totalTasks = obj["totalTasks"].as<size_t>();
activeTasks = obj["activeTasks"].as<size_t>();
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,194 @@
#pragma once
#include "ApiResponse.h"
#include "TaskInfoSerializable.h"
#include <map>
namespace spore {
namespace types {
/**
* Response class for task status endpoint
* Handles complete JSON document creation for task status data
*/
class TaskStatusResponse : public ApiResponse {
public:
/**
* Set the task summary information
* @param totalTasks Total number of tasks
* @param activeTasks Number of active tasks
*/
void setSummary(size_t totalTasks, size_t activeTasks) {
TaskSummarySerializable summary(totalTasks, activeTasks);
JsonObject summaryObj = doc["summary"].to<JsonObject>();
summary.toJson(summaryObj);
}
/**
* Add a single task to the response
* @param taskName Name of the task
* @param taskData Task data as JsonObject
*/
void addTask(const String& taskName, const JsonObject& taskData) {
TaskInfoSerializable serializable(taskName, taskData);
if (!doc["tasks"].is<JsonArray>()) {
doc["tasks"] = JsonArray();
}
JsonArray tasksArr = doc["tasks"].as<JsonArray>();
JsonObject taskObj = tasksArr.add<JsonObject>();
serializable.toJson(taskObj);
}
/**
* Add a single task to the response (std::string version)
* @param taskName Name of the task
* @param taskData Task data as JsonObject
*/
void addTask(const std::string& taskName, const JsonObject& taskData) {
TaskInfoSerializable serializable(taskName, taskData);
if (!doc["tasks"].is<JsonArray>()) {
doc["tasks"] = JsonArray();
}
JsonArray tasksArr = doc["tasks"].as<JsonArray>();
JsonObject taskObj = tasksArr.add<JsonObject>();
serializable.toJson(taskObj);
}
/**
* Add multiple tasks from a task statuses map
* @param taskStatuses Map of task name to task data
*/
void addTasks(const std::map<String, JsonObject>& taskStatuses) {
for (const auto& pair : taskStatuses) {
addTask(pair.first, pair.second);
}
}
/**
* Set the system information
*/
void setSystemInfo() {
SystemInfoSerializable systemInfo;
JsonObject systemObj = doc["system"].to<JsonObject>();
systemInfo.toJson(systemObj);
}
/**
* Build complete response with all components
* @param taskStatuses Map of task name to task data
*/
void buildCompleteResponse(const std::map<String, JsonObject>& taskStatuses) {
// Set summary
size_t totalTasks = taskStatuses.size();
size_t activeTasks = 0;
for (const auto& pair : taskStatuses) {
if (pair.second["enabled"]) {
activeTasks++;
}
}
setSummary(totalTasks, activeTasks);
// Add all tasks
addTasks(taskStatuses);
// Set system info
setSystemInfo();
}
/**
* Build complete response with all components from vector
* @param taskStatuses Vector of pairs of task name to task data
*/
void buildCompleteResponse(const std::vector<std::pair<std::string, JsonObject>>& taskStatuses) {
// Clear the document first since getAllTaskStatuses creates a root array
doc.clear();
// Set summary
size_t totalTasks = taskStatuses.size();
size_t activeTasks = 0;
for (const auto& pair : taskStatuses) {
if (pair.second["enabled"]) {
activeTasks++;
}
}
setSummary(totalTasks, activeTasks);
// Add all tasks - extract data before clearing to avoid invalid references
JsonArray tasksArr = doc["tasks"].to<JsonArray>();
for (const auto& pair : taskStatuses) {
// Extract data from JsonObject before it becomes invalid
String taskName = pair.first.c_str();
unsigned long interval = pair.second["interval"];
bool enabled = pair.second["enabled"];
bool running = pair.second["running"];
bool autoStart = pair.second["autoStart"];
// Create new JsonObject in our document
JsonObject taskObj = tasksArr.add<JsonObject>();
taskObj["name"] = taskName;
taskObj["interval"] = interval;
taskObj["enabled"] = enabled;
taskObj["running"] = running;
taskObj["autoStart"] = autoStart;
}
// Set system info
setSystemInfo();
}
};
/**
* Response class for task control operations
* Handles JSON responses for task enable/disable/start/stop operations
*/
class TaskControlResponse : public ApiResponse {
public:
/**
* Set the response data for a task control operation
* @param success Whether the operation was successful
* @param message Response message
* @param taskName Name of the task
* @param action Action performed
*/
void setResponse(bool success, const String& message, const String& taskName, const String& action) {
doc["success"] = success;
doc["message"] = message;
doc["task"] = taskName;
doc["action"] = action;
}
/**
* Add detailed task information to the response
* @param taskName Name of the task
* @param enabled Whether task is enabled
* @param running Whether task is running
* @param interval Task interval
*/
void addTaskDetails(const String& taskName, bool enabled, bool running, unsigned long interval) {
JsonObject taskDetails = doc["taskDetails"].to<JsonObject>();
taskDetails["name"] = taskName;
taskDetails["enabled"] = enabled;
taskDetails["running"] = running;
taskDetails["interval"] = interval;
// Add system info
SystemInfoSerializable systemInfo;
JsonObject systemObj = taskDetails["system"].to<JsonObject>();
systemInfo.toJson(systemObj);
}
/**
* Set error response
* @param message Error message
* @param example Optional example for correct usage
*/
void setError(const String& message, const String& example = "") {
doc["success"] = false;
doc["message"] = message;
if (example.length() > 0) {
doc["example"] = example;
}
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,118 @@
#pragma once
#include <Arduino.h>
/**
* @brief CPU usage measurement utility for ESP32/ESP8266
*
* This class provides methods to measure CPU usage by tracking idle time
* and calculating the percentage of time the CPU is busy vs idle.
*/
class CpuUsage {
public:
/**
* @brief Construct a new CpuUsage object
*/
CpuUsage();
/**
* @brief Destructor
*/
~CpuUsage() = default;
/**
* @brief Initialize the CPU usage measurement
* Call this once during setup
*/
void begin();
/**
* @brief Start measuring CPU usage for the current cycle
* Call this at the beginning of your main loop
*/
void startMeasurement();
/**
* @brief End measuring CPU usage for the current cycle
* Call this at the end of your main loop
*/
void endMeasurement();
/**
* @brief Get the current CPU usage percentage
* @return float CPU usage percentage (0.0 to 100.0)
*/
float getCpuUsage() const;
/**
* @brief Get the average CPU usage over the measurement window
* @return float Average CPU usage percentage (0.0 to 100.0)
*/
float getAverageCpuUsage() const;
/**
* @brief Get the maximum CPU usage recorded
* @return float Maximum CPU usage percentage (0.0 to 100.0)
*/
float getMaxCpuUsage() const;
/**
* @brief Get the minimum CPU usage recorded
* @return float Minimum CPU usage percentage (0.0 to 100.0)
*/
float getMinCpuUsage() const;
/**
* @brief Reset all CPU usage statistics
*/
void reset();
/**
* @brief Check if measurement is currently active
* @return true if measurement is active, false otherwise
*/
bool isMeasuring() const;
/**
* @brief Get the number of measurements taken
* @return unsigned long Number of measurements
*/
unsigned long getMeasurementCount() const;
private:
// Measurement state
bool _initialized;
bool _measuring;
unsigned long _measurementCount;
// Timing variables
unsigned long _cycleStartTime;
unsigned long _idleStartTime;
unsigned long _totalIdleTime;
unsigned long _totalCycleTime;
// Statistics
float _currentCpuUsage;
float _averageCpuUsage;
float _maxCpuUsage;
float _minCpuUsage;
unsigned long _totalCpuTime;
// Rolling average window
static constexpr size_t ROLLING_WINDOW_SIZE = 10;
float _rollingWindow[ROLLING_WINDOW_SIZE];
size_t _rollingIndex;
bool _rollingWindowFull;
/**
* @brief Update rolling average calculation
* @param value New value to add to rolling average
*/
void updateRollingAverage(float value);
/**
* @brief Update min/max statistics
* @param value New value to check against min/max
*/
void updateMinMax(float value);
};

View File

@@ -0,0 +1,56 @@
#pragma once
#include <ArduinoJson.h>
namespace spore {
namespace util {
/**
* Abstract base class for objects that can be serialized to/from JSON
* Provides a clean interface for converting objects to JsonObject and back
*/
class JsonSerializable {
public:
virtual ~JsonSerializable() = default;
/**
* Serialize this object to a JsonObject
* @param obj The JsonObject to populate with this object's data
*/
virtual void toJson(JsonObject& obj) const = 0;
/**
* Deserialize this object from a JsonObject
* @param obj The JsonObject containing the data to populate this object
*/
virtual void fromJson(const JsonObject& obj) = 0;
/**
* Convenience method to create a JsonObject from this object
* @param doc The JsonDocument to create the object in
* @return A JsonObject containing this object's serialized data
*/
JsonObject toJsonObject(JsonDocument& doc) const {
JsonObject obj = doc.to<JsonObject>();
toJson(obj);
return obj;
}
/**
* Convenience method to create a JsonArray from a collection of serializable objects
* @param doc The JsonDocument to create the array in
* @param objects Collection of objects implementing JsonSerializable
* @return A JsonArray containing all serialized objects
*/
template<typename Container>
static JsonArray toJsonArray(JsonDocument& doc, const Container& objects) {
JsonArray arr = doc.to<JsonArray>();
for (const auto& obj : objects) {
JsonObject item = arr.add<JsonObject>();
obj.toJson(item);
}
return arr;
}
};
} // namespace util
} // namespace spore

View File

@@ -9,7 +9,7 @@
; https://docs.platformio.org/page/projectconf.html ; https://docs.platformio.org/page/projectconf.html
[platformio] [platformio]
;default_envs = esp01_1m default_envs = base
src_dir = . src_dir = .
data_dir = ${PROJECT_DIR}/examples/${PIOENV}/data data_dir = ${PROJECT_DIR}/examples/${PIOENV}/data
@@ -80,69 +80,7 @@ build_src_filter =
+<src/spore/util/*.cpp> +<src/spore/util/*.cpp>
+<src/internal/*.cpp> +<src/internal/*.cpp>
[env:d1_mini_relay] [env:neopattern]
platform = platformio/espressif8266@^4.2.1
board = d1_mini
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.filesystem = littlefs
board_build.flash_mode = dio
board_build.flash_size = 4M
board_build.ldscript = eagle.flash.4m1m.ld
lib_deps = ${common.lib_deps}
data_dir = examples/relay/data
build_src_filter =
+<examples/relay/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>
[env:esp01_1m_neopixel]
platform = platformio/espressif8266@^4.2.1
board = esp01_1m
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.filesystem = littlefs
board_build.flash_mode = dout
board_build.ldscript = eagle.flash.1m64.ld
lib_deps = ${common.lib_deps}
adafruit/Adafruit NeoPixel@^1.15.1
build_src_filter =
+<examples/neopixel/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>
[env:d1_mini_neopixel]
platform = platformio/espressif8266@^4.2.1
board = d1_mini
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.filesystem = littlefs
board_build.flash_mode = dio
board_build.flash_size = 4M
board_build.ldscript = eagle.flash.4m1m.ld
lib_deps = ${common.lib_deps}
adafruit/Adafruit NeoPixel@^1.15.1
build_src_filter =
+<examples/neopixel/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>
[env:esp01_1m_neopattern]
platform = platformio/espressif8266@^4.2.1 platform = platformio/espressif8266@^4.2.1
board = esp01_1m board = esp01_1m
framework = arduino framework = arduino
@@ -162,44 +100,3 @@ build_src_filter =
+<src/spore/types/*.cpp> +<src/spore/types/*.cpp>
+<src/spore/util/*.cpp> +<src/spore/util/*.cpp>
+<src/internal/*.cpp> +<src/internal/*.cpp>
[env:d1_mini_neopattern]
platform = platformio/espressif8266@^4.2.1
board = d1_mini
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.filesystem = littlefs
board_build.flash_mode = dio
board_build.flash_size = 4M
board_build.ldscript = eagle.flash.4m1m.ld
lib_deps = ${common.lib_deps}
adafruit/Adafruit NeoPixel@^1.15.1
build_src_filter =
+<examples/neopattern/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>
[env:d1_mini_static_web]
platform = platformio/espressif8266@^4.2.1
board = d1_mini
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.flash_mode = dio
board_build.flash_size = 4M
board_build.filesystem = littlefs
board_build.ldscript = eagle.flash.4m1m.ld
lib_deps = ${common.lib_deps}
build_src_filter =
+<examples/static_web/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>

View File

@@ -4,17 +4,18 @@
#include "spore/services/ClusterService.h" #include "spore/services/ClusterService.h"
#include "spore/services/TaskService.h" #include "spore/services/TaskService.h"
#include "spore/services/StaticFileService.h" #include "spore/services/StaticFileService.h"
#include "spore/services/MonitoringService.h"
#include <Arduino.h> #include <Arduino.h>
Spore::Spore() : ctx(), network(ctx), taskManager(ctx), cluster(ctx, taskManager), Spore::Spore() : ctx(), network(ctx), taskManager(ctx), cluster(ctx, taskManager),
apiServer(ctx, taskManager, ctx.config.api_server_port), apiServer(ctx, taskManager, ctx.config.api_server_port),
initialized(false), apiServerStarted(false) { cpuUsage(), initialized(false), apiServerStarted(false) {
} }
Spore::Spore(std::initializer_list<std::pair<String, String>> initialLabels) Spore::Spore(std::initializer_list<std::pair<String, String>> initialLabels)
: ctx(initialLabels), network(ctx), taskManager(ctx), cluster(ctx, taskManager), : ctx(initialLabels), network(ctx), taskManager(ctx), cluster(ctx, taskManager),
apiServer(ctx, taskManager, ctx.config.api_server_port), apiServer(ctx, taskManager, ctx.config.api_server_port),
initialized(false), apiServerStarted(false) { cpuUsage(), initialized(false), apiServerStarted(false) {
} }
Spore::~Spore() { Spore::~Spore() {
@@ -33,6 +34,9 @@ void Spore::setup() {
// Initialize core components // Initialize core components
initializeCore(); initializeCore();
// Initialize CPU usage monitoring
cpuUsage.begin();
// Register core services // Register core services
registerCoreServices(); registerCoreServices();
@@ -68,7 +72,16 @@ void Spore::loop() {
return; return;
} }
// Start CPU usage measurement
cpuUsage.startMeasurement();
// Execute main tasks
taskManager.execute(); taskManager.execute();
// End CPU usage measurement before yield
cpuUsage.endMeasurement();
// Yield to allow other tasks to run
yield(); yield();
} }
@@ -121,6 +134,7 @@ void Spore::registerCoreServices() {
auto clusterService = std::make_shared<ClusterService>(ctx); auto clusterService = std::make_shared<ClusterService>(ctx);
auto taskService = std::make_shared<TaskService>(taskManager); auto taskService = std::make_shared<TaskService>(taskManager);
auto staticFileService = std::make_shared<StaticFileService>(ctx, apiServer); auto staticFileService = std::make_shared<StaticFileService>(ctx, apiServer);
auto monitoringService = std::make_shared<MonitoringService>(cpuUsage);
// Add to services list // Add to services list
services.push_back(nodeService); services.push_back(nodeService);
@@ -128,6 +142,7 @@ void Spore::registerCoreServices() {
services.push_back(clusterService); services.push_back(clusterService);
services.push_back(taskService); services.push_back(taskService);
services.push_back(staticFileService); services.push_back(staticFileService);
services.push_back(monitoringService);
LOG_INFO("Spore", "Core services registered"); LOG_INFO("Spore", "Core services registered");
} }

View File

@@ -21,57 +21,31 @@ void ApiServer::registerEndpoint(const String& uri, int method,
const String& serviceName) { const String& serviceName) {
// Add to local endpoints // Add to local endpoints
endpoints.push_back(EndpointInfo{uri, method, params, serviceName, true}); endpoints.push_back(EndpointInfo{uri, method, params, serviceName, true});
// Update cluster if needed
if (ctx.memberList && !ctx.memberList->empty()) {
auto it = ctx.memberList->find(ctx.hostname);
if (it != ctx.memberList->end()) {
it->second.endpoints.push_back(EndpointInfo{uri, method, params, serviceName, true});
}
}
} }
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler) { void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
// Get current service name if available const String& serviceName) {
String serviceName = "unknown";
if (!services.empty()) {
serviceName = services.back().get().getName();
}
registerEndpoint(uri, method, {}, serviceName); registerEndpoint(uri, method, {}, serviceName);
server.on(uri.c_str(), method, requestHandler); server.on(uri.c_str(), method, requestHandler);
} }
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler, void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler) { std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
// Get current service name if available const String& serviceName) {
String serviceName = "unknown";
if (!services.empty()) {
serviceName = services.back().get().getName();
}
registerEndpoint(uri, method, {}, serviceName); registerEndpoint(uri, method, {}, serviceName);
server.on(uri.c_str(), method, requestHandler, uploadHandler); server.on(uri.c_str(), method, requestHandler, uploadHandler);
} }
// Overloads that also record minimal capability specs // Overloads that also record minimal capability specs
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler, void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const std::vector<ParamSpec>& params) { const std::vector<ParamSpec>& params, const String& serviceName) {
// Get current service name if available
String serviceName = "unknown";
if (!services.empty()) {
serviceName = services.back().get().getName();
}
registerEndpoint(uri, method, params, serviceName); registerEndpoint(uri, method, params, serviceName);
server.on(uri.c_str(), method, requestHandler); server.on(uri.c_str(), method, requestHandler);
} }
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler, void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler, std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const std::vector<ParamSpec>& params) { const std::vector<ParamSpec>& params, const String& serviceName) {
// Get current service name if available
String serviceName = "unknown";
if (!services.empty()) {
serviceName = services.back().get().getName();
}
registerEndpoint(uri, method, params, serviceName); registerEndpoint(uri, method, params, serviceName);
server.on(uri.c_str(), method, requestHandler, uploadHandler); server.on(uri.c_str(), method, requestHandler, uploadHandler);
} }

View File

@@ -107,7 +107,6 @@ void NetworkManager::setupWiFi() {
} }
ctx.self.lastSeen = millis(); ctx.self.lastSeen = millis();
ctx.self.status = NodeInfo::ACTIVE; ctx.self.status = NodeInfo::ACTIVE;
ctx.self.labels["hostname"] = ctx.hostname;
// Ensure member list has an entry for this node // Ensure member list has an entry for this node
auto &memberList = *ctx.memberList; auto &memberList = *ctx.memberList;

View File

@@ -1,42 +1,19 @@
#include "spore/services/ClusterService.h" #include "spore/services/ClusterService.h"
#include "spore/core/ApiServer.h" #include "spore/core/ApiServer.h"
#include "spore/types/ClusterResponse.h"
using spore::types::ClusterMembersResponse;
ClusterService::ClusterService(NodeContext& ctx) : ctx(ctx) {} ClusterService::ClusterService(NodeContext& ctx) : ctx(ctx) {}
void ClusterService::registerEndpoints(ApiServer& api) { void ClusterService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/cluster/members", HTTP_GET, api.addEndpoint("/api/cluster/members", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleMembersRequest(request); }, [this](AsyncWebServerRequest* request) { handleMembersRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "ClusterService");
} }
void ClusterService::handleMembersRequest(AsyncWebServerRequest* request) { void ClusterService::handleMembersRequest(AsyncWebServerRequest* request) {
JsonDocument doc; ClusterMembersResponse response;
JsonArray arr = doc["members"].to<JsonArray>(); response.addNodes(ctx.memberList);
request->send(200, "application/json", response.toJsonString());
for (const auto& pair : *ctx.memberList) {
const NodeInfo& node = pair.second;
JsonObject obj = arr.add<JsonObject>();
obj["hostname"] = node.hostname;
obj["ip"] = node.ip.toString();
obj["lastSeen"] = node.lastSeen;
obj["latency"] = node.latency;
obj["status"] = statusToStr(node.status);
obj["resources"]["freeHeap"] = node.resources.freeHeap;
obj["resources"]["chipId"] = node.resources.chipId;
obj["resources"]["sdkVersion"] = node.resources.sdkVersion;
obj["resources"]["cpuFreqMHz"] = node.resources.cpuFreqMHz;
obj["resources"]["flashChipSize"] = node.resources.flashChipSize;
// Add labels if present
if (!node.labels.empty()) {
JsonObject labelsObj = obj["labels"].to<JsonObject>();
for (const auto& kv : node.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
} }

View File

@@ -0,0 +1,115 @@
#include "spore/services/MonitoringService.h"
#include "spore/core/ApiServer.h"
#include "spore/util/Logging.h"
#include <Arduino.h>
#include <FS.h>
#include <LittleFS.h>
MonitoringService::MonitoringService(CpuUsage& cpuUsage)
: cpuUsage(cpuUsage) {
}
void MonitoringService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/monitoring/resources", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleResourcesRequest(request); },
std::vector<ParamSpec>{}, "MonitoringService");
}
MonitoringService::SystemResources MonitoringService::getSystemResources() const {
SystemResources resources;
// CPU information
resources.currentCpuUsage = cpuUsage.getCpuUsage();
resources.averageCpuUsage = cpuUsage.getAverageCpuUsage();
resources.maxCpuUsage = cpuUsage.getMaxCpuUsage();
resources.minCpuUsage = cpuUsage.getMinCpuUsage();
resources.measurementCount = cpuUsage.getMeasurementCount();
resources.isMeasuring = cpuUsage.isMeasuring();
// Memory information - ESP8266 compatible
resources.freeHeap = ESP.getFreeHeap();
resources.totalHeap = 81920; // ESP8266 has ~80KB RAM
resources.minFreeHeap = 0; // Not available on ESP8266
resources.maxAllocHeap = 0; // Not available on ESP8266
resources.heapFragmentation = calculateHeapFragmentation();
// Filesystem information
getFilesystemInfo(resources.totalBytes, resources.usedBytes);
resources.freeBytes = resources.totalBytes - resources.usedBytes;
resources.usagePercent = resources.totalBytes > 0 ?
(float)resources.usedBytes / (float)resources.totalBytes * 100.0f : 0.0f;
// System uptime
resources.uptimeMs = millis();
resources.uptimeSeconds = resources.uptimeMs / 1000;
return resources;
}
void MonitoringService::handleResourcesRequest(AsyncWebServerRequest* request) {
SystemResources resources = getSystemResources();
JsonDocument doc;
// CPU section
JsonObject cpu = doc["cpu"].to<JsonObject>();
cpu["current_usage"] = resources.currentCpuUsage;
cpu["average_usage"] = resources.averageCpuUsage;
cpu["max_usage"] = resources.maxCpuUsage;
cpu["min_usage"] = resources.minCpuUsage;
cpu["measurement_count"] = resources.measurementCount;
cpu["is_measuring"] = resources.isMeasuring;
// Memory section
JsonObject memory = doc["memory"].to<JsonObject>();
memory["free_heap"] = resources.freeHeap;
memory["total_heap"] = resources.totalHeap;
memory["min_free_heap"] = resources.minFreeHeap;
memory["max_alloc_heap"] = resources.maxAllocHeap;
memory["heap_fragmentation"] = resources.heapFragmentation;
memory["heap_usage_percent"] = resources.totalHeap > 0 ?
(float)(resources.totalHeap - resources.freeHeap) / (float)resources.totalHeap * 100.0f : 0.0f;
// Filesystem section
JsonObject filesystem = doc["filesystem"].to<JsonObject>();
filesystem["total_bytes"] = resources.totalBytes;
filesystem["used_bytes"] = resources.usedBytes;
filesystem["free_bytes"] = resources.freeBytes;
filesystem["usage_percent"] = resources.usagePercent;
// System section
JsonObject system = doc["system"].to<JsonObject>();
system["uptime_ms"] = resources.uptimeMs;
system["uptime_seconds"] = resources.uptimeSeconds;
system["uptime_formatted"] = String(resources.uptimeSeconds / 3600) + "h " +
String((resources.uptimeSeconds % 3600) / 60) + "m " +
String(resources.uptimeSeconds % 60) + "s";
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
size_t MonitoringService::calculateHeapFragmentation() const {
size_t freeHeap = ESP.getFreeHeap();
size_t maxAllocHeap = 0; // Not available on ESP8266
if (maxAllocHeap == 0) return 0;
// Calculate fragmentation as percentage of free heap that can't be allocated in one block
return (freeHeap - maxAllocHeap) * 100 / freeHeap;
}
void MonitoringService::getFilesystemInfo(size_t& totalBytes, size_t& usedBytes) const {
totalBytes = 0;
usedBytes = 0;
if (LittleFS.begin()) {
FSInfo fsInfo;
if (LittleFS.info(fsInfo)) {
totalBytes = fsInfo.totalBytes;
usedBytes = fsInfo.usedBytes;
}
LittleFS.end();
}
}

View File

@@ -8,16 +8,16 @@ void NetworkService::registerEndpoints(ApiServer& api) {
// WiFi scanning endpoints // WiFi scanning endpoints
api.addEndpoint("/api/network/wifi/scan", HTTP_POST, api.addEndpoint("/api/network/wifi/scan", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleWifiScanRequest(request); }, [this](AsyncWebServerRequest* request) { handleWifiScanRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "NetworkService");
api.addEndpoint("/api/network/wifi/scan", HTTP_GET, api.addEndpoint("/api/network/wifi/scan", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleGetWifiNetworks(request); }, [this](AsyncWebServerRequest* request) { handleGetWifiNetworks(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "NetworkService");
// Network status and configuration endpoints // Network status and configuration endpoints
api.addEndpoint("/api/network/status", HTTP_GET, api.addEndpoint("/api/network/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleNetworkStatus(request); }, [this](AsyncWebServerRequest* request) { handleNetworkStatus(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "NetworkService");
api.addEndpoint("/api/network/wifi/config", HTTP_POST, api.addEndpoint("/api/network/wifi/config", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleSetWifiConfig(request); }, [this](AsyncWebServerRequest* request) { handleSetWifiConfig(request); },
@@ -26,7 +26,7 @@ void NetworkService::registerEndpoints(ApiServer& api) {
ParamSpec{String("password"), true, String("body"), String("string"), {}, String("")}, ParamSpec{String("password"), true, String("body"), String("string"), {}, String("")},
ParamSpec{String("connect_timeout_ms"), false, String("body"), String("number"), {}, String("10000")}, ParamSpec{String("connect_timeout_ms"), false, String("body"), String("number"), {}, String("10000")},
ParamSpec{String("retry_delay_ms"), false, String("body"), String("number"), {}, String("500")} ParamSpec{String("retry_delay_ms"), false, String("body"), String("number"), {}, String("500")}
}); }, "NetworkService");
} }
void NetworkService::handleWifiScanRequest(AsyncWebServerRequest* request) { void NetworkService::handleWifiScanRequest(AsyncWebServerRequest* request) {

View File

@@ -1,6 +1,11 @@
#include "spore/services/NodeService.h" #include "spore/services/NodeService.h"
#include "spore/core/ApiServer.h" #include "spore/core/ApiServer.h"
#include "spore/util/Logging.h" #include "spore/util/Logging.h"
#include "spore/types/NodeResponse.h"
using spore::types::NodeStatusResponse;
using spore::types::NodeOperationResponse;
using spore::types::NodeEndpointsResponse;
NodeService::NodeService(NodeContext& ctx, ApiServer& apiServer) : ctx(ctx), apiServer(apiServer) {} NodeService::NodeService(NodeContext& ctx, ApiServer& apiServer) : ctx(ctx), apiServer(apiServer) {}
@@ -8,7 +13,7 @@ void NodeService::registerEndpoints(ApiServer& api) {
// Status endpoint // Status endpoint
api.addEndpoint("/api/node/status", HTTP_GET, api.addEndpoint("/api/node/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); }, [this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "NodeService");
// Update endpoint with file upload // Update endpoint with file upload
api.addEndpoint("/api/node/update", HTTP_POST, api.addEndpoint("/api/node/update", HTTP_POST,
@@ -18,54 +23,45 @@ void NodeService::registerEndpoints(ApiServer& api) {
}, },
std::vector<ParamSpec>{ std::vector<ParamSpec>{
ParamSpec{String("firmware"), true, String("body"), String("file"), {}, String("")} ParamSpec{String("firmware"), true, String("body"), String("file"), {}, String("")}
}); }, "NodeService");
// Restart endpoint // Restart endpoint
api.addEndpoint("/api/node/restart", HTTP_POST, api.addEndpoint("/api/node/restart", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleRestartRequest(request); }, [this](AsyncWebServerRequest* request) { handleRestartRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "NodeService");
// Endpoints endpoint // Endpoints endpoint
api.addEndpoint("/api/node/endpoints", HTTP_GET, api.addEndpoint("/api/node/endpoints", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleEndpointsRequest(request); }, [this](AsyncWebServerRequest* request) { handleEndpointsRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "NodeService");
} }
void NodeService::handleStatusRequest(AsyncWebServerRequest* request) { void NodeService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc; NodeStatusResponse response;
doc["freeHeap"] = ESP.getFreeHeap();
doc["chipId"] = ESP.getChipId();
doc["sdkVersion"] = ESP.getSdkVersion();
doc["cpuFreqMHz"] = ESP.getCpuFreqMHz();
doc["flashChipSize"] = ESP.getFlashChipSize();
// Include local node labels if present // Get labels from member list or self
std::map<String, String> labels;
if (ctx.memberList) { if (ctx.memberList) {
auto it = ctx.memberList->find(ctx.hostname); auto it = ctx.memberList->find(ctx.hostname);
if (it != ctx.memberList->end()) { if (it != ctx.memberList->end()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>(); labels = it->second.labels;
for (const auto& kv : it->second.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
} else if (!ctx.self.labels.empty()) { } else if (!ctx.self.labels.empty()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>(); labels = ctx.self.labels;
for (const auto& kv : ctx.self.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
} }
} }
String json; response.buildCompleteResponse(labels);
serializeJson(doc, json); request->send(200, "application/json", response.toJsonString());
request->send(200, "application/json", json);
} }
void NodeService::handleUpdateRequest(AsyncWebServerRequest* request) { void NodeService::handleUpdateRequest(AsyncWebServerRequest* request) {
bool success = !Update.hasError(); bool success = !Update.hasError();
AsyncWebServerResponse* response = request->beginResponse(200, "application/json", NodeOperationResponse response;
success ? "{\"status\": \"OK\"}" : "{\"status\": \"FAIL\"}"); response.setSuccess(success ? "OK" : "FAIL");
response->addHeader("Connection", "close");
request->send(response); AsyncWebServerResponse* httpResponse = request->beginResponse(200, "application/json", response.toJsonString());
httpResponse->addHeader("Connection", "close");
request->send(httpResponse);
request->onDisconnect([this]() { request->onDisconnect([this]() {
LOG_INFO("API", "Restart device"); LOG_INFO("API", "Restart device");
delay(10); delay(10);
@@ -108,10 +104,12 @@ void NodeService::handleUpdateUpload(AsyncWebServerRequest* request, const Strin
} }
void NodeService::handleRestartRequest(AsyncWebServerRequest* request) { void NodeService::handleRestartRequest(AsyncWebServerRequest* request) {
AsyncWebServerResponse* response = request->beginResponse(200, "application/json", NodeOperationResponse response;
"{\"status\": \"restarting\"}"); response.setSuccess("restarting");
response->addHeader("Connection", "close");
request->send(response); AsyncWebServerResponse* httpResponse = request->beginResponse(200, "application/json", response.toJsonString());
httpResponse->addHeader("Connection", "close");
request->send(httpResponse);
request->onDisconnect([this]() { request->onDisconnect([this]() {
LOG_INFO("API", "Restart device"); LOG_INFO("API", "Restart device");
delay(10); delay(10);
@@ -120,36 +118,7 @@ void NodeService::handleRestartRequest(AsyncWebServerRequest* request) {
} }
void NodeService::handleEndpointsRequest(AsyncWebServerRequest* request) { void NodeService::handleEndpointsRequest(AsyncWebServerRequest* request) {
JsonDocument doc; NodeEndpointsResponse response;
JsonArray endpointsArr = doc["endpoints"].to<JsonArray>(); response.addEndpoints(apiServer.getEndpoints());
request->send(200, "application/json", response.toJsonString());
// Add all registered endpoints from ApiServer
for (const auto& endpoint : apiServer.getEndpoints()) {
JsonObject obj = endpointsArr.add<JsonObject>();
obj["uri"] = endpoint.uri;
obj["method"] = ApiServer::methodToStr(endpoint.method);
if (!endpoint.params.empty()) {
JsonArray paramsArr = obj["params"].to<JsonArray>();
for (const auto& ps : endpoint.params) {
JsonObject p = paramsArr.add<JsonObject>();
p["name"] = ps.name;
p["location"] = ps.location;
p["required"] = ps.required;
p["type"] = ps.type;
if (!ps.values.empty()) {
JsonArray allowed = p["values"].to<JsonArray>();
for (const auto& v : ps.values) {
allowed.add(v);
}
}
if (ps.defaultValue.length() > 0) {
p["default"] = ps.defaultValue;
}
}
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
} }

View File

@@ -1,13 +1,17 @@
#include "spore/services/TaskService.h" #include "spore/services/TaskService.h"
#include "spore/core/ApiServer.h" #include "spore/core/ApiServer.h"
#include "spore/types/TaskResponse.h"
#include <algorithm> #include <algorithm>
using spore::types::TaskStatusResponse;
using spore::types::TaskControlResponse;
TaskService::TaskService(TaskManager& taskManager) : taskManager(taskManager) {} TaskService::TaskService(TaskManager& taskManager) : taskManager(taskManager) {}
void TaskService::registerEndpoints(ApiServer& api) { void TaskService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/tasks/status", HTTP_GET, api.addEndpoint("/api/tasks/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); }, [this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{}); std::vector<ParamSpec>{}, "TaskService");
api.addEndpoint("/api/tasks/control", HTTP_POST, api.addEndpoint("/api/tasks/control", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); }, [this](AsyncWebServerRequest* request) { handleControlRequest(request); },
@@ -28,36 +32,19 @@ void TaskService::registerEndpoints(ApiServer& api) {
{String("enable"), String("disable"), String("start"), String("stop"), String("status")}, {String("enable"), String("disable"), String("start"), String("stop"), String("status")},
String("") String("")
} }
}); }, "TaskService");
} }
void TaskService::handleStatusRequest(AsyncWebServerRequest* request) { void TaskService::handleStatusRequest(AsyncWebServerRequest* request) {
TaskStatusResponse response;
// Get task statuses using a separate document to avoid reference issues
JsonDocument scratch; JsonDocument scratch;
auto taskStatuses = taskManager.getAllTaskStatuses(scratch); auto taskStatuses = taskManager.getAllTaskStatuses(scratch);
JsonDocument doc; // Build the complete response with the task data
JsonObject summaryObj = doc["summary"].to<JsonObject>(); response.buildCompleteResponse(taskStatuses);
summaryObj["totalTasks"] = taskStatuses.size(); request->send(200, "application/json", response.toJsonString());
summaryObj["activeTasks"] = std::count_if(taskStatuses.begin(), taskStatuses.end(),
[](const auto& pair) { return pair.second["enabled"]; });
JsonArray tasksArr = doc["tasks"].to<JsonArray>();
for (const auto& taskPair : taskStatuses) {
JsonObject taskObj = tasksArr.add<JsonObject>();
taskObj["name"] = taskPair.first;
taskObj["interval"] = taskPair.second["interval"];
taskObj["enabled"] = taskPair.second["enabled"];
taskObj["running"] = taskPair.second["running"];
taskObj["autoStart"] = taskPair.second["autoStart"];
}
JsonObject systemObj = doc["system"].to<JsonObject>();
systemObj["freeHeap"] = ESP.getFreeHeap();
systemObj["uptime"] = millis();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
} }
void TaskService::handleControlRequest(AsyncWebServerRequest* request) { void TaskService::handleControlRequest(AsyncWebServerRequest* request) {
@@ -88,50 +75,27 @@ void TaskService::handleControlRequest(AsyncWebServerRequest* request) {
success = true; success = true;
message = "Task status retrieved"; message = "Task status retrieved";
JsonDocument statusDoc; TaskControlResponse response;
statusDoc["success"] = success; response.setResponse(success, message, taskName, action);
statusDoc["message"] = message; response.addTaskDetails(taskName,
statusDoc["task"] = taskName; taskManager.isTaskEnabled(taskName.c_str()),
statusDoc["action"] = action; taskManager.isTaskRunning(taskName.c_str()),
taskManager.getTaskInterval(taskName.c_str()));
statusDoc["taskDetails"] = JsonObject(); request->send(200, "application/json", response.toJsonString());
JsonObject taskDetails = statusDoc["taskDetails"];
taskDetails["name"] = taskName;
taskDetails["enabled"] = taskManager.isTaskEnabled(taskName.c_str());
taskDetails["running"] = taskManager.isTaskRunning(taskName.c_str());
taskDetails["interval"] = taskManager.getTaskInterval(taskName.c_str());
taskDetails["system"] = JsonObject();
JsonObject systemInfo = taskDetails["system"];
systemInfo["freeHeap"] = ESP.getFreeHeap();
systemInfo["uptime"] = millis();
String statusJson;
serializeJson(statusDoc, statusJson);
request->send(200, "application/json", statusJson);
return; return;
} else { } else {
success = false; success = false;
message = "Invalid action. Use: enable, disable, start, stop, or status"; message = "Invalid action. Use: enable, disable, start, stop, or status";
} }
JsonDocument doc; TaskControlResponse response;
doc["success"] = success; response.setResponse(success, message, taskName, action);
doc["message"] = message; request->send(success ? 200 : 400, "application/json", response.toJsonString());
doc["task"] = taskName;
doc["action"] = action;
String json;
serializeJson(doc, json);
request->send(success ? 200 : 400, "application/json", json);
} else { } else {
JsonDocument doc; TaskControlResponse response;
doc["success"] = false; response.setError("Missing parameters. Required: task, action",
doc["message"] = "Missing parameters. Required: task, action"; "{\"task\": \"discovery_send\", \"action\": \"status\"}");
doc["example"] = "{\"task\": \"discovery_send\", \"action\": \"status\"}"; request->send(400, "application/json", response.toJsonString());
String json;
serializeJson(doc, json);
request->send(400, "application/json", json);
} }
} }

185
src/spore/util/CpuUsage.cpp Normal file
View File

@@ -0,0 +1,185 @@
#include "spore/util/CpuUsage.h"
CpuUsage::CpuUsage()
: _initialized(false)
, _measuring(false)
, _measurementCount(0)
, _cycleStartTime(0)
, _idleStartTime(0)
, _totalIdleTime(0)
, _totalCycleTime(0)
, _currentCpuUsage(0.0f)
, _averageCpuUsage(0.0f)
, _maxCpuUsage(0.0f)
, _minCpuUsage(100.0f)
, _totalCpuTime(0)
, _rollingIndex(0)
, _rollingWindowFull(false) {
// Initialize rolling window
for (size_t i = 0; i < ROLLING_WINDOW_SIZE; ++i) {
_rollingWindow[i] = 0.0f;
}
}
void CpuUsage::begin() {
if (_initialized) {
return;
}
_initialized = true;
_measurementCount = 0;
_totalIdleTime = 0;
_totalCycleTime = 0;
_totalCpuTime = 0;
_currentCpuUsage = 0.0f;
_averageCpuUsage = 0.0f;
_maxCpuUsage = 0.0f;
_minCpuUsage = 100.0f;
_rollingIndex = 0;
_rollingWindowFull = false;
// Initialize rolling window
for (size_t i = 0; i < ROLLING_WINDOW_SIZE; ++i) {
_rollingWindow[i] = 0.0f;
}
}
void CpuUsage::startMeasurement() {
if (!_initialized) {
return;
}
if (_measuring) {
// If already measuring, end the previous measurement first
endMeasurement();
}
_measuring = true;
_cycleStartTime = millis();
_idleStartTime = millis();
}
void CpuUsage::endMeasurement() {
if (!_initialized || !_measuring) {
return;
}
unsigned long cycleEndTime = millis();
unsigned long cycleDuration = cycleEndTime - _cycleStartTime;
// Calculate idle time (time spent in yield() calls)
unsigned long idleTime = cycleEndTime - _idleStartTime;
// Calculate CPU usage
if (cycleDuration > 0) {
_currentCpuUsage = ((float)(cycleDuration - idleTime) / (float)cycleDuration) * 100.0f;
// Clamp to valid range
if (_currentCpuUsage < 0.0f) {
_currentCpuUsage = 0.0f;
} else if (_currentCpuUsage > 100.0f) {
_currentCpuUsage = 100.0f;
}
// Update statistics
_totalCycleTime += cycleDuration;
_totalIdleTime += idleTime;
_totalCpuTime += (cycleDuration - idleTime);
_measurementCount++;
// Update rolling average
updateRollingAverage(_currentCpuUsage);
// Update min/max
updateMinMax(_currentCpuUsage);
// Calculate overall average
if (_measurementCount > 0) {
_averageCpuUsage = ((float)_totalCpuTime / (float)_totalCycleTime) * 100.0f;
}
}
_measuring = false;
}
float CpuUsage::getCpuUsage() const {
return _currentCpuUsage;
}
float CpuUsage::getAverageCpuUsage() const {
if (_rollingWindowFull) {
return _averageCpuUsage;
} else if (_measurementCount > 0) {
// Calculate average from rolling window
float sum = 0.0f;
for (size_t i = 0; i < _rollingIndex; ++i) {
sum += _rollingWindow[i];
}
return sum / (float)_rollingIndex;
}
return 0.0f;
}
float CpuUsage::getMaxCpuUsage() const {
return _maxCpuUsage;
}
float CpuUsage::getMinCpuUsage() const {
return _minCpuUsage;
}
void CpuUsage::reset() {
_measurementCount = 0;
_totalIdleTime = 0;
_totalCycleTime = 0;
_totalCpuTime = 0;
_currentCpuUsage = 0.0f;
_averageCpuUsage = 0.0f;
_maxCpuUsage = 0.0f;
_minCpuUsage = 100.0f;
_rollingIndex = 0;
_rollingWindowFull = false;
// Reset rolling window
for (size_t i = 0; i < ROLLING_WINDOW_SIZE; ++i) {
_rollingWindow[i] = 0.0f;
}
}
bool CpuUsage::isMeasuring() const {
return _measuring;
}
unsigned long CpuUsage::getMeasurementCount() const {
return _measurementCount;
}
void CpuUsage::updateRollingAverage(float value) {
_rollingWindow[_rollingIndex] = value;
_rollingIndex++;
if (_rollingIndex >= ROLLING_WINDOW_SIZE) {
_rollingIndex = 0;
_rollingWindowFull = true;
}
// Calculate rolling average
float sum = 0.0f;
size_t count = _rollingWindowFull ? ROLLING_WINDOW_SIZE : _rollingIndex;
for (size_t i = 0; i < count; ++i) {
sum += _rollingWindow[i];
}
_averageCpuUsage = sum / (float)count;
}
void CpuUsage::updateMinMax(float value) {
if (value > _maxCpuUsage) {
_maxCpuUsage = value;
}
if (value < _minCpuUsage) {
_minCpuUsage = value;
}
}