/** * Original NeoPattern code by Bill Earl * https://learn.adafruit.com/multi-tasking-the-arduino-part-3/overview * * TODO * - cleanup the mess * - fnc table for patterns to replace switch case * * Custom modifications by 0x1d: * - default OnComplete callback that sets pattern to reverse * - separate animation update from timer; Update now updates directly, UpdateScheduled uses timer */ #ifndef __NeoPattern_INCLUDED__ #define __NeoPattern_INCLUDED__ #include using namespace std; // Pattern types supported: enum pattern { NONE = 0, RAINBOW_CYCLE = 1, THEATER_CHASE = 2, COLOR_WIPE = 3, SCANNER = 4, FADE = 5, FIRE = 6 }; // Patern directions supported: enum direction { FORWARD, REVERSE }; // NeoPattern Class - derived from the Adafruit_NeoPixel class class NeoPattern : public Adafruit_NeoPixel { public: // Member Variables: pattern ActivePattern = RAINBOW_CYCLE; // which pattern is running direction Direction = FORWARD; // direction to run the pattern unsigned long Interval = 150; // milliseconds between updates unsigned long lastUpdate = 0; // last update of position uint32_t Color1 = 0; uint32_t Color2 = 0; // What colors are in use uint16_t TotalSteps = 32; // total number of steps in the pattern uint16_t Index; // current step within the pattern uint16_t completed = 0; // FIXME return current NeoPatternState void (*OnComplete)(int); // Callback on completion of pattern uint8_t *frameBuffer; int bufferSize = 0; // Constructor - calls base-class constructor to initialize strip NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(int)) : Adafruit_NeoPixel(pixels, pin, type) { frameBuffer = (uint8_t *)malloc(768); OnComplete = callback; TotalSteps = numPixels(); begin(); } NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type) : Adafruit_NeoPixel(pixels, pin, type) { frameBuffer = (uint8_t *)malloc(768); TotalSteps = numPixels(); begin(); } void handleStream(uint8_t *data, size_t len) { //const uint16_t *data16 = (uint16_t *)data; bufferSize = len; memcpy(frameBuffer, data, len); } void drawFrameBuffer(int w, uint8_t *frame, int length) { for (int i = 0; i < length; i++) { uint8_t r = frame[i]; uint8_t g = frame[i + 1]; uint8_t b = frame[i + 2]; setPixelColor(i, r, g, b); } } void onCompleteDefault(int pixels) { //Serial.println("onCompleteDefault"); // FIXME no specific code if (ActivePattern == THEATER_CHASE) { return; } Reverse(); //Serial.println("pattern completed"); } // Update the pattern void Update() { switch (ActivePattern) { case RAINBOW_CYCLE: RainbowCycleUpdate(); break; case THEATER_CHASE: TheaterChaseUpdate(); break; case COLOR_WIPE: ColorWipeUpdate(); break; case SCANNER: ScannerUpdate(); break; case FADE: FadeUpdate(); break; case FIRE: Fire(50, 120); break; default: if (bufferSize > 0) { drawFrameBuffer(TotalSteps, frameBuffer, bufferSize); } break; } } void UpdateScheduled() { if ((millis() - lastUpdate) > Interval) // time to update { lastUpdate = millis(); Update(); } } // Increment the Index and reset at the end void Increment() { completed = 0; if (Direction == FORWARD) { Index++; if (Index >= TotalSteps) { Index = 0; completed = 1; if (OnComplete != NULL) { OnComplete(numPixels()); // call the comlpetion callback } else { onCompleteDefault(numPixels()); } } } else // Direction == REVERSE { --Index; if (Index <= 0) { Index = TotalSteps - 1; completed = 1; if (OnComplete != NULL) { OnComplete(numPixels()); // call the comlpetion callback } else { onCompleteDefault(numPixels()); } } } } // Reverse pattern direction void Reverse() { if (Direction == FORWARD) { Direction = REVERSE; Index = TotalSteps - 1; } else { Direction = FORWARD; Index = 0; } } // Initialize for a RainbowCycle void RainbowCycle(uint8_t interval, direction dir = FORWARD) { ActivePattern = RAINBOW_CYCLE; Interval = interval; TotalSteps = 255; Index = 0; Direction = dir; } // Update the Rainbow Cycle Pattern void RainbowCycleUpdate() { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255)); } show(); Increment(); } // Initialize for a Theater Chase void TheaterChase(uint32_t color1, uint32_t color2, uint16_t interval, direction dir = FORWARD) { ActivePattern = THEATER_CHASE; Interval = interval; TotalSteps = numPixels(); Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Theater Chase Pattern void TheaterChaseUpdate() { for (int i = 0; i < numPixels(); i++) { if ((i + Index) % 3 == 0) { setPixelColor(i, Color1); } else { setPixelColor(i, Color2); } } show(); Increment(); } // Initialize for a ColorWipe void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD) { ActivePattern = COLOR_WIPE; Interval = interval; TotalSteps = numPixels(); Color1 = color; Index = 0; Direction = dir; } // Update the Color Wipe Pattern void ColorWipeUpdate() { setPixelColor(Index, Color1); show(); Increment(); } // Initialize for a SCANNNER void Scanner(uint32_t color1, uint8_t interval) { ActivePattern = SCANNER; Interval = interval; TotalSteps = (numPixels() - 1) * 2; Color1 = color1; Index = 0; } // Update the Scanner Pattern void ScannerUpdate() { for (int i = 0; i < numPixels(); i++) { if (i == Index) // Scan Pixel to the right { setPixelColor(i, Color1); } else if (i == TotalSteps - Index) // Scan Pixel to the left { setPixelColor(i, Color1); } else // Fading tail { setPixelColor(i, DimColor(getPixelColor(i))); } } show(); Increment(); } // Initialize for a Fade void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD) { ActivePattern = FADE; Interval = interval; TotalSteps = steps; Color1 = color1; Color2 = color2; Index = 0; Direction = dir; } // Update the Fade Pattern void FadeUpdate() { // Calculate linear interpolation between Color1 and Color2 // Optimise order of operations to minimize truncation error uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps; uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps; uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps; ColorSet(Color(red, green, blue)); show(); Increment(); } // Calculate 50% dimmed version of a color (used by ScannerUpdate) uint32_t DimColor(uint32_t color) { // Shift R, G and B components one bit to the right uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1); return dimColor; } // Set all pixels to a color (synchronously) void ColorSet(uint32_t color) { for (int i = 0; i < numPixels(); i++) { setPixelColor(i, color); } show(); } // Returns the Red component of a 32-bit color uint8_t Red(uint32_t color) { return (color >> 16) & 0xFF; } // Returns the Green component of a 32-bit color uint8_t Green(uint32_t color) { return (color >> 8) & 0xFF; } // Returns the Blue component of a 32-bit color uint8_t Blue(uint32_t color) { return color & 0xFF; } // Input a value 0 to 255 to get a color value. // The colours are a transition r - g - b - back to r. uint32_t Wheel(byte WheelPos) { //if(WheelPos == 0) return Color(0,0,0); WheelPos = 255 - WheelPos; if (WheelPos < 85) { return Color(255 - WheelPos * 3, 0, WheelPos * 3); } else if (WheelPos < 170) { WheelPos -= 85; return Color(0, WheelPos * 3, 255 - WheelPos * 3); } else { WheelPos -= 170; return Color(WheelPos * 3, 255 - WheelPos * 3, 0); } } /** * Effects from https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/ */ void Fire(int Cooling, int Sparking) { byte heat[numPixels()]; int cooldown; // Step 1. Cool down every cell a little for (int i = 0; i < numPixels(); i++) { cooldown = random(0, ((Cooling * 10) / numPixels()) + 2); if (cooldown > heat[i]) { heat[i] = 0; } else { heat[i] = heat[i] - cooldown; } } // Step 2. Heat from each cell drifts 'up' and diffuses a little for (int k = numPixels() - 1; k >= 2; k--) { heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3; } // Step 3. Randomly ignite new 'sparks' near the bottom if (random(255) < Sparking) { int y = random(7); heat[y] = heat[y] + random(160, 255); //heat[y] = random(160,255); } // Step 4. Convert heat to LED colors for (int j = 0; j < numPixels(); j++) { setPixelHeatColor(j, heat[j]); } showStrip(); } void setPixelHeatColor(int Pixel, byte temperature) { // Scale 'heat' down from 0-255 to 0-191 byte t192 = round((temperature / 255.0) * 191); // calculate ramp up from byte heatramp = t192 & 0x3F; // 0..63 heatramp <<= 2; // scale up to 0..252 // figure out which third of the spectrum we're in: if (t192 > 0x80) { // hottest setPixel(Pixel, 255, 255, heatramp); } else if (t192 > 0x40) { // middle setPixel(Pixel, 255, heatramp, 0); } else { // coolest setPixel(Pixel, heatramp, 0, 0); } } void setPixel(int Pixel, byte red, byte green, byte blue) { setPixelColor(Pixel, Color(red, green, blue)); } void showStrip() { show(); } }; #endif