# Data Flow Patterns ## Purpose This document describes how data flows through the Go Platform system, covering request/response flows, event flows, cache patterns, and observability data collection. ## Overview Data flows through the platform in multiple patterns depending on the type of operation. Understanding these patterns helps in debugging, performance optimization, and system design decisions. ## Key Concepts - **Request Flow**: Data flow from HTTP request to response - **Event Flow**: Asynchronous data flow through event bus - **Cache Flow**: Data flow through caching layers - **Observability Flow**: Telemetry data collection and export ## Request/Response Data Flow ### Standard HTTP Request Flow Complete data flow from HTTP request through API Gateway to backend service and response. ```mermaid graph TD Start[HTTP Request] --> Gateway[API Gateway] Gateway --> RateLimit{Rate Limit Check} RateLimit -->|Allowed| Auth[Validate JWT via Auth Service] RateLimit -->|Exceeded| Error0[429 Too Many Requests] Auth -->|Valid| Authz[Check Permission via Authz Service] Auth -->|Invalid| Error1[401 Unauthorized] Authz -->|Authorized| Route[Route to Backend Service] Authz -->|Unauthorized| Error2[403 Forbidden] Route --> Service[Backend Service] Service --> Cache{Cache Check} Cache -->|Hit| CacheData[Return Cached Data] Cache -->|Miss| Repo[Repository] Repo --> DB[(Database)] DB --> Repo Repo --> Service Service --> CacheStore[Update Cache] Service --> EventBus[Publish Events] Service --> AuditSvc[Audit Service
gRPC] Service --> Metrics[Update Metrics] Service --> Gateway Gateway --> Response[HTTP Response] CacheData --> Gateway Error0 --> Response Error1 --> Response Error2 --> Response Response --> Client[Client] style Gateway fill:#4a90e2,stroke:#2e5c8a,stroke-width:3px,color:#fff style Auth fill:#ff6b6b,stroke:#c92a2a,stroke-width:2px,color:#fff style Service fill:#50c878,stroke:#2e7d4e,stroke-width:2px,color:#fff style Cache fill:#4a90e2,stroke:#2e5c8a,stroke-width:2px,color:#fff ``` ### Request Data Transformation How request data is transformed as it flows through API Gateway to backend service. ```mermaid sequenceDiagram participant Client participant Gateway participant BackendService participant Service participant Repo participant DB Client->>Gateway: HTTP Request (JSON) Gateway->>Gateway: Rate limiting Gateway->>Gateway: Validate JWT (via Auth Service) Gateway->>Gateway: Check permission (via Authz Service) Gateway->>Gateway: Route to service (via service discovery) Gateway->>Gateway: Forward request (gRPC/HTTP) Gateway->>BackendService: Request (gRPC/HTTP) BackendService->>BackendService: Parse request BackendService->>BackendService: Validate request BackendService->>BackendService: Convert to DTO BackendService->>Service: Business DTO Service->>Service: Business logic Service->>Service: Domain entity Service->>Repo: Domain entity Repo->>Repo: Convert to DB model Repo->>DB: SQL query DB-->>Repo: DB result Repo->>Repo: Convert to domain entity Repo-->>Service: Domain entity Service->>Service: Business logic Service->>Service: Response DTO Service-->>BackendService: Response DTO BackendService->>BackendService: Convert to response format BackendService-->>Gateway: Response (gRPC/HTTP) Gateway->>Gateway: Transform response (if needed) Gateway-->>Client: HTTP Response (JSON) ``` ## Event Data Flow ### Event Publishing Flow How events are published and flow through the event bus. ```mermaid graph LR Publisher[Event Publisher] --> Serialize[Serialize Event] Serialize --> Metadata[Add Metadata] Metadata --> EventBus[Event Bus] EventBus --> Topic[Kafka Topic] Topic --> Subscriber1[Subscriber 1] Topic --> Subscriber2[Subscriber 2] Topic --> SubscriberN[Subscriber N] Subscriber1 --> Process1[Process Event] Subscriber2 --> Process2[Process Event] SubscriberN --> ProcessN[Process Event] style EventBus fill:#4a90e2,stroke:#2e5c8a,stroke-width:2px,color:#fff style Topic fill:#7b68ee,stroke:#5a4fcf,stroke-width:2px,color:#fff ``` ### Event Data Transformation How event data is transformed during publishing and consumption. ```mermaid sequenceDiagram participant Publisher participant EventBus participant Kafka participant Subscriber Publisher->>Publisher: Domain event Publisher->>EventBus: Publish(event) EventBus->>EventBus: Serialize to JSON EventBus->>EventBus: Add metadata: - trace_id - user_id - timestamp - source EventBus->>Kafka: Send to topic Kafka-->>EventBus: Acknowledged Kafka->>Subscriber: Deliver event Subscriber->>Subscriber: Deserialize JSON Subscriber->>Subscriber: Extract metadata Subscriber->>Subscriber: Domain event Subscriber->>Subscriber: Process event ``` ## Cache Data Flow ### Cache-Aside Pattern Flow How data flows through cache using the cache-aside pattern. ```mermaid graph TD Start[Service Request] --> Check{Cache Hit?} Check -->|Yes| GetCache[Get from Cache] Check -->|No| GetDB[Query Database] GetCache --> Deserialize[Deserialize Data] Deserialize --> Return[Return Data] GetDB --> DB[(Database)] DB --> DBData[Database Result] DBData --> Serialize[Serialize Data] Serialize --> StoreCache[Store in Cache] StoreCache --> Return style Check fill:#4a90e2,stroke:#2e5c8a,stroke-width:2px,color:#fff style StoreCache fill:#50c878,stroke:#2e7d4e,stroke-width:2px,color:#fff ``` ### Cache Invalidation Flow How cache is invalidated when data changes. ```mermaid sequenceDiagram participant Service participant Repository participant DB participant Cache Service->>Repository: Update entity Repository->>DB: Update database DB-->>Repository: Update complete Repository->>Cache: Invalidate(key) Cache->>Cache: Remove from cache Cache-->>Repository: Invalidated Repository-->>Service: Update complete Note over Service,Cache: Next read will fetch from DB and cache ``` ### Cache Write-Through Pattern How data is written through cache to database. ```mermaid sequenceDiagram participant Service participant Cache participant Repository participant DB Service->>Cache: Write data Cache->>Cache: Store in cache Cache->>Repository: Write to database Repository->>DB: Insert/Update DB-->>Repository: Success Repository-->>Cache: Write complete Cache-->>Service: Data written ``` ## Observability Data Flow ### Tracing Data Flow How distributed tracing data flows through the system. ```mermaid graph TD Request[HTTP Request] --> Trace[Start Trace] Trace --> Span1[HTTP Span] Span1 --> Service[Service Call] Service --> Span2[Service Span] Span2 --> DB[Database Query] DB --> Span3[DB Span] Span2 --> gRPC[gRPC Call] gRPC --> Span4[gRPC Span] Span3 --> Aggregate[Collect Spans] Span4 --> Aggregate Aggregate --> Export[Export to Collector] Export --> Collector[OpenTelemetry Collector] Collector --> Backend[Backend Storage] style Trace fill:#4a90e2,stroke:#2e5c8a,stroke-width:2px,color:#fff style Aggregate fill:#50c878,stroke:#2e7d4e,stroke-width:2px,color:#fff ``` ### Metrics Data Flow How metrics are collected and exported. ```mermaid sequenceDiagram participant Service participant MetricsRegistry participant Exporter participant Prometheus participant Grafana Service->>Service: Business operation Service->>MetricsRegistry: Increment counter Service->>MetricsRegistry: Record duration Service->>MetricsRegistry: Set gauge MetricsRegistry->>MetricsRegistry: Aggregate metrics Prometheus->>Exporter: Scrape metrics Exporter->>MetricsRegistry: Get metrics MetricsRegistry-->>Exporter: Metrics data Exporter-->>Prometheus: Prometheus format Prometheus->>Prometheus: Store metrics Grafana->>Prometheus: Query metrics Prometheus-->>Grafana: Metrics data Grafana->>Grafana: Render dashboard ``` ### Log Data Flow How logs flow through the system to various sinks. ```mermaid graph TD Service[Service] --> Logger[Logger] Logger --> Format[Format Log] Format --> Output[Output Log] Output --> Stdout[stdout] Output --> File[File] Output --> LogCollector[Log Collector] LogCollector --> Elasticsearch[Elasticsearch] LogCollector --> CloudLogging[Cloud Logging] Stdout --> Container[Container Logs] style Logger fill:#4a90e2,stroke:#2e5c8a,stroke-width:2px,color:#fff style LogCollector fill:#50c878,stroke:#2e7d4e,stroke-width:2px,color:#fff ``` ## Audit Data Flow How audit logs flow through the system. ```mermaid sequenceDiagram participant Service participant AuditClient participant AuditService participant DB participant Archive Service->>Service: Security-sensitive action Service->>AuditClient: Record audit log AuditClient->>AuditClient: Build audit entry: - actor - action - target - metadata - timestamp AuditClient->>AuditService: Store audit log AuditService->>AuditService: Validate entry AuditService->>AuditService: Ensure immutability AuditService->>DB: Insert audit log DB-->>AuditService: Log stored AuditService->>Archive: Archive old logs Archive->>Archive: Long-term storage Note over Service,Archive: Audit logs are immutable ``` ## Cross-Service Data Flow ### Inter-Service Request Flow How data flows when services communicate via service clients. ```mermaid sequenceDiagram participant ServiceA participant ServiceClient participant ServiceRegistry participant ServiceB participant DB ServiceA->>ServiceClient: Call service method ServiceClient->>ServiceRegistry: Discover service ServiceRegistry-->>ServiceClient: Service endpoint ServiceClient->>ServiceB: gRPC request ServiceB->>ServiceB: Process request ServiceB->>DB: Query data DB-->>ServiceB: Data ServiceB->>ServiceB: Business logic ServiceB-->>ServiceClient: gRPC response ServiceClient-->>ServiceA: Return data ``` ### Service-to-Service Event Flow How events flow between services. ```mermaid graph LR ServiceA[Service A] -->|Publish| EventBus[Event Bus] EventBus -->|Route| ServiceB[Service B] EventBus -->|Route| ServiceC[Service C] ServiceB -->|Publish| EventBus EventBus -->|Route| ServiceD[Service D] ServiceC -->|Publish| EventBus EventBus -->|Route| ServiceE[Service E] style EventBus fill:#4a90e2,stroke:#2e5c8a,stroke-width:2px,color:#fff ``` ## Data Flow Patterns Summary ### Request Flow Pattern - **Path**: Client → HTTP → Handler → Service → Repository → Database - **Response**: Database → Repository → Service → Handler → HTTP → Client - **Side Effects**: Cache updates, event publishing, audit logging, metrics ### Event Flow Pattern - **Path**: Publisher → Event Bus → Kafka → Subscribers - **Characteristics**: Asynchronous, eventual consistency, decoupled ### Cache Flow Pattern - **Read**: Cache → (miss) → Database → Cache - **Write**: Service → Database → Cache invalidation - **Characteristics**: Performance optimization, cache-aside pattern ### Observability Flow Pattern - **Tracing**: Service → OpenTelemetry → Collector → Backend - **Metrics**: Service → Metrics Registry → Prometheus → Grafana - **Logs**: Service → Logger → Collector → Storage ## Integration Points This data flow patterns document integrates with: - **[System Behavior Overview](system-behavior.md)**: How data flows fit into system behavior - **[Service Orchestration](service-orchestration.md)**: How data flows between services - **[Module Integration Patterns](module-integration-patterns.md)**: How data flows through modules - **[Operational Scenarios](operational-scenarios.md)**: Data flow in specific scenarios - **[Component Relationships](component-relationships.md)**: Component-level data flow ## Related Documentation - [System Behavior Overview](system-behavior.md) - System-level behavior - [Service Orchestration](service-orchestration.md) - Service coordination - [Module Integration Patterns](module-integration-patterns.md) - Module integration - [Operational Scenarios](operational-scenarios.md) - Operational flows - [Component Relationships](component-relationships.md) - Component dependencies - [Architecture Overview](architecture.md) - System architecture