feat: services (#2)

This commit is contained in:
2025-09-13 13:45:24 +02:00
parent fe045804cb
commit 12caeb0be6
33 changed files with 3293 additions and 785 deletions

68
.cursor/rules/cpp.mdc Normal file
View File

@@ -0,0 +1,68 @@
---
description: C++ Development Rules
globs:
alwaysApply: true
---
# C++ Development Rules
You are a senior C++ developer with expertise in modern C++ (C++17/20), STL, and system-level programming.
## Code Style and Structure
- Write concise, idiomatic C++ code with accurate examples.
- Follow modern C++ conventions and best practices.
- Use object-oriented, procedural, or functional programming patterns as appropriate.
- Leverage STL and standard algorithms for collection operations.
- Use descriptive variable and method names (e.g., 'isUserSignedIn', 'calculateTotal').
- Structure files into headers (*.hpp) and implementation files (*.cpp) with logical separation of concerns.
## Naming Conventions
- Use PascalCase for class names.
- Use camelCase for variable names and methods.
- Use SCREAMING_SNAKE_CASE for constants and macros.
- Prefix member variables with an underscore or m_ (e.g., `_userId`, `m_userId`).
- Use namespaces to organize code logically.
## C++ Features Usage
- Prefer modern C++ features (e.g., auto, range-based loops, smart pointers).
- Use `std::unique_ptr` and `std::shared_ptr` for memory management.
- Prefer `std::optional`, `std::variant`, and `std::any` for type-safe alternatives.
- Use `constexpr` and `const` to optimize compile-time computations.
- Use `std::string_view` for read-only string operations to avoid unnecessary copies.
## Syntax and Formatting
- Follow a consistent coding style, such as Google C++ Style Guide or your teams standards.
- Place braces on the same line for control structures and methods.
- Use clear and consistent commenting practices.
## Error Handling and Validation
- Use exceptions for error handling (e.g., `std::runtime_error`, `std::invalid_argument`).
- Use RAII for resource management to avoid memory leaks.
- Validate inputs at function boundaries.
- Log errors using a logging library (e.g., spdlog, Boost.Log).
## Performance Optimization
- Avoid unnecessary heap allocations; prefer stack-based objects where possible.
- Use `std::move` to enable move semantics and avoid copies.
- Optimize loops with algorithms from `<algorithm>` (e.g., `std::sort`, `std::for_each`).
- Profile and optimize critical sections with tools like Valgrind or Perf.
## Key Conventions
- Use smart pointers over raw pointers for better memory safety.
- Avoid global variables; use singletons sparingly.
- Use `enum class` for strongly typed enumerations.
- Separate interface from implementation in classes.
- Use templates and metaprogramming judiciously for generic solutions.
## Security
- Use secure coding practices to avoid vulnerabilities (e.g., buffer overflows, dangling pointers).
- Prefer `std::array` or `std::vector` over raw arrays.
- Avoid C-style casts; use `static_cast`, `dynamic_cast`, or `reinterpret_cast` when necessary.
- Enforce const-correctness in functions and member variables.
## Documentation
- Write clear comments for classes, methods, and critical logic.
- Use Doxygen for generating API documentation.
- Document assumptions, constraints, and expected behavior of code.
Follow the official ISO C++ standards and guidelines for best practices in modern C++ development.

View File

@@ -28,6 +28,7 @@ SPORE is a cluster engine for ESP8266 microcontrollers that provides automatic n
- **Event System**: Local and cluster-wide event publishing/subscription
- **Over-The-Air Updates**: Seamless firmware updates across the cluster
- **REST API**: HTTP-based cluster management and monitoring
- **Capability Discovery**: Automatic API endpoint and service capability detection
## Supported Hardware
@@ -66,11 +67,15 @@ The system provides a comprehensive RESTful API for monitoring and controlling t
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/node/status` | GET | System resources and API endpoint registry |
| `/api/node/capabilities` | GET | API endpoint capabilities and parameters |
| `/api/cluster/members` | GET | Cluster membership and health status |
| `/api/node/update` | POST | OTA firmware updates |
| `/api/node/restart` | POST | System restart |
| `/api/tasks/status` | GET | Task management and monitoring |
| `/api/tasks/control` | POST | Task control operations |
| `/api/network/status` | GET | WiFi and network status information |
| `/api/network/wifi/scan` | GET/POST | WiFi network scanning and discovery |
| `/api/network/wifi/config` | POST | WiFi configuration management |
**Response Format:** All endpoints return JSON with standardized error handling and HTTP status codes.
@@ -122,6 +127,7 @@ The project uses PlatformIO with Arduino framework and supports multiple ESP8266
- No persistent storage for configuration
- Task monitoring and system health metrics
- Task execution history and performance analytics not yet implemented
- No authentication or security features implemented
## Troubleshooting

View File

@@ -212,6 +212,9 @@ paths:
sdkVersion: "3.1.2"
cpuFreqMHz: 80
flashChipSize: 1048576
labels:
location: "kitchen"
type: "sensor"
api:
- uri: "/api/node/status"
method: 1
@@ -220,6 +223,41 @@ paths:
- uri: "/api/tasks/control"
method: 3
/api/node/capabilities:
get:
summary: Get API endpoint capabilities
description: |
Returns detailed information about all available API endpoints,
including their parameters, types, and validation rules.
tags:
- System Status
responses:
'200':
description: Capabilities retrieved successfully
content:
application/json:
schema:
$ref: '#/components/schemas/CapabilitiesResponse'
examples:
default:
summary: Default response
value:
endpoints:
- uri: "/api/tasks/control"
method: "POST"
params:
- name: "task"
location: "body"
required: true
type: "string"
- name: "action"
location: "body"
required: true
type: "string"
values: ["enable", "disable", "start", "stop", "status"]
/api/cluster/members:
get:
summary: Get cluster membership information
@@ -325,6 +363,425 @@ paths:
value:
status: "restarting"
/api/network/status:
get:
summary: Get network status information
description: |
Returns comprehensive WiFi and network status information
including connection details, signal strength, and mode.
tags:
- Network Management
responses:
'200':
description: Network status retrieved successfully
content:
application/json:
schema:
$ref: '#/components/schemas/NetworkStatusResponse'
examples:
default:
summary: Default response
value:
wifi:
connected: true
mode: "STA"
ssid: "MyNetwork"
ip: "192.168.1.100"
mac: "AA:BB:CC:DD:EE:FF"
hostname: "spore-node-1"
rssi: -45
/api/network/wifi/scan:
get:
summary: Get available WiFi networks
description: |
Returns a list of available WiFi networks discovered
during the last scan.
tags:
- Network Management
responses:
'200':
description: WiFi networks retrieved successfully
content:
application/json:
schema:
$ref: '#/components/schemas/WifiScanResponse'
examples:
default:
summary: Default response
value:
access_points:
- ssid: "MyNetwork"
rssi: -45
channel: 6
encryption_type: 4
hidden: false
bssid: "AA:BB:CC:DD:EE:FF"
post:
summary: Trigger WiFi network scan
description: |
Initiates a new WiFi network scan to discover
available networks.
tags:
- Network Management
responses:
'200':
description: WiFi scan initiated successfully
content:
application/json:
schema:
$ref: '#/components/schemas/WifiScanInitResponse'
examples:
default:
summary: Scan initiated
value:
status: "scanning"
message: "WiFi scan started"
/api/network/wifi/config:
post:
summary: Configure WiFi connection
description: |
Configures WiFi connection with new credentials and
attempts to connect to the specified network.
tags:
- Network Management
requestBody:
required: true
content:
application/x-www-form-urlencoded:
schema:
type: object
required:
- ssid
- password
properties:
ssid:
type: string
description: Network SSID
example: "MyNetwork"
password:
type: string
description: Network password
example: "mypassword"
connect_timeout_ms:
type: integer
description: Connection timeout in milliseconds
default: 10000
example: 10000
retry_delay_ms:
type: integer
description: Retry delay in milliseconds
default: 500
example: 500
responses:
'200':
description: WiFi configuration updated successfully
content:
application/json:
schema:
$ref: '#/components/schemas/WifiConfigResponse'
examples:
default:
summary: Configuration updated
value:
status: "success"
message: "WiFi configuration updated"
connected: true
ip: "192.168.1.100"
'400':
description: Invalid parameters
content:
application/json:
schema:
$ref: '#/components/schemas/ErrorResponse'
/api/neopixel/status:
get:
summary: Get NeoPixel LED strip status
description: |
Returns current NeoPixel LED strip status and configuration
including pin, count, brightness, and current pattern.
tags:
- Hardware Services
responses:
'200':
description: NeoPixel status retrieved successfully
content:
application/json:
schema:
$ref: '#/components/schemas/NeoPixelStatusResponse'
/api/neopixel/patterns:
get:
summary: Get available LED patterns
description: |
Returns a list of available LED patterns for NeoPixel strips.
tags:
- Hardware Services
responses:
'200':
description: Patterns retrieved successfully
content:
application/json:
schema:
type: array
items:
type: string
example: ["off", "color_wipe", "rainbow", "rainbow_cycle", "theater_chase", "theater_chase_rainbow"]
/api/neopixel:
post:
summary: Control NeoPixel LED strip
description: |
Controls NeoPixel LED strip patterns, colors, and brightness.
tags:
- Hardware Services
requestBody:
required: true
content:
application/x-www-form-urlencoded:
schema:
type: object
properties:
pattern:
type: string
description: Pattern name
example: "rainbow"
interval_ms:
type: integer
description: Update interval in milliseconds
example: 100
brightness:
type: integer
minimum: 0
maximum: 255
description: Brightness level
example: 50
color:
type: string
description: Primary color (hex value)
example: "0xFF0000"
r:
type: integer
minimum: 0
maximum: 255
description: Red component
g:
type: integer
minimum: 0
maximum: 255
description: Green component
b:
type: integer
minimum: 0
maximum: 255
description: Blue component
responses:
'200':
description: NeoPixel control successful
content:
application/json:
schema:
$ref: '#/components/schemas/NeoPixelControlResponse'
/api/relay/status:
get:
summary: Get relay status
description: |
Returns current relay status and configuration.
tags:
- Hardware Services
responses:
'200':
description: Relay status retrieved successfully
content:
application/json:
schema:
$ref: '#/components/schemas/RelayStatusResponse'
/api/relay:
post:
summary: Control relay
description: |
Controls relay state (on/off/toggle).
tags:
- Hardware Services
requestBody:
required: true
content:
application/x-www-form-urlencoded:
schema:
type: object
required:
- state
properties:
state:
type: string
enum: [on, off, toggle]
description: Desired relay state
example: "on"
responses:
'200':
description: Relay control successful
content:
application/json:
schema:
$ref: '#/components/schemas/RelayControlResponse'
'400':
description: Invalid state parameter
content:
application/json:
schema:
$ref: '#/components/schemas/ErrorResponse'
/api/neopattern/status:
get:
summary: Get NeoPattern service status
description: |
Returns NeoPattern service status and configuration.
tags:
- Hardware Services
responses:
'200':
description: NeoPattern status retrieved successfully
content:
application/json:
schema:
$ref: '#/components/schemas/NeoPatternStatusResponse'
/api/neopattern/patterns:
get:
summary: Get available pattern types
description: |
Returns a list of available pattern types for NeoPattern service.
tags:
- Hardware Services
responses:
'200':
description: Patterns retrieved successfully
content:
application/json:
schema:
type: array
items:
type: string
example: ["off", "rainbow_cycle", "theater_chase", "color_wipe", "scanner", "fade", "fire"]
/api/neopattern:
post:
summary: Control NeoPattern service
description: |
Controls advanced LED patterns with multiple parameters.
tags:
- Hardware Services
requestBody:
required: true
content:
application/x-www-form-urlencoded:
schema:
type: object
properties:
pattern:
type: string
description: Pattern name
example: "rainbow_cycle"
interval_ms:
type: integer
description: Update interval in milliseconds
example: 100
brightness:
type: integer
minimum: 0
maximum: 255
description: Brightness level
example: 50
color:
type: string
description: Primary color (hex value)
example: "0xFF0000"
color2:
type: string
description: Secondary color (hex value)
example: "0x0000FF"
r:
type: integer
minimum: 0
maximum: 255
description: Red component
g:
type: integer
minimum: 0
maximum: 255
description: Green component
b:
type: integer
minimum: 0
maximum: 255
description: Blue component
r2:
type: integer
minimum: 0
maximum: 255
description: Secondary red component
g2:
type: integer
minimum: 0
maximum: 255
description: Secondary green component
b2:
type: integer
minimum: 0
maximum: 255
description: Secondary blue component
total_steps:
type: integer
description: Pattern step count
example: 32
direction:
type: string
enum: [forward, reverse]
description: Pattern direction
example: "forward"
responses:
'200':
description: NeoPattern control successful
content:
application/json:
schema:
$ref: '#/components/schemas/NeoPatternControlResponse'
components:
schemas:
TaskStatusResponse:
@@ -501,11 +958,393 @@ components:
type: integer
description: Flash chip size in bytes
example: 1048576
labels:
type: object
description: Node labels and metadata
additionalProperties:
type: string
example:
location: "kitchen"
type: "sensor"
api:
type: array
items:
$ref: '#/components/schemas/ApiEndpoint'
CapabilitiesResponse:
type: object
required:
- endpoints
properties:
endpoints:
type: array
items:
$ref: '#/components/schemas/EndpointCapability'
EndpointCapability:
type: object
required:
- uri
- method
properties:
uri:
type: string
description: Endpoint URI path
example: "/api/tasks/control"
method:
type: string
description: HTTP method
example: "POST"
params:
type: array
items:
$ref: '#/components/schemas/ParameterSpec'
ParameterSpec:
type: object
required:
- name
- location
- required
- type
properties:
name:
type: string
description: Parameter name
example: "task"
location:
type: string
description: Parameter location
example: "body"
required:
type: boolean
description: Whether parameter is required
example: true
type:
type: string
description: Parameter data type
example: "string"
values:
type: array
items:
type: string
description: Allowed values for enum types
example: ["enable", "disable", "start", "stop", "status"]
default:
type: string
description: Default value
example: "10000"
NetworkStatusResponse:
type: object
required:
- wifi
properties:
wifi:
type: object
required:
- connected
- mode
properties:
connected:
type: boolean
description: Whether WiFi is connected
example: true
mode:
type: string
enum: [STA, AP]
description: WiFi mode
example: "STA"
ssid:
type: string
description: Connected network SSID
example: "MyNetwork"
ip:
type: string
format: ipv4
description: Local IP address
example: "192.168.1.100"
mac:
type: string
description: MAC address
example: "AA:BB:CC:DD:EE:FF"
hostname:
type: string
description: Device hostname
example: "spore-node-1"
rssi:
type: integer
description: Signal strength in dBm
example: -45
ap_ip:
type: string
format: ipv4
description: Access point IP (if in AP mode)
example: "192.168.4.1"
ap_mac:
type: string
description: Access point MAC (if in AP mode)
example: "AA:BB:CC:DD:EE:FF"
stations_connected:
type: integer
description: Number of connected stations (if in AP mode)
example: 2
WifiScanResponse:
type: object
required:
- access_points
properties:
access_points:
type: array
items:
$ref: '#/components/schemas/AccessPoint'
AccessPoint:
type: object
required:
- ssid
- rssi
- channel
- encryption_type
- hidden
- bssid
properties:
ssid:
type: string
description: Network name
example: "MyNetwork"
rssi:
type: integer
description: Signal strength in dBm
example: -45
channel:
type: integer
description: WiFi channel
example: 6
encryption_type:
type: integer
description: Security type
example: 4
hidden:
type: boolean
description: Whether network is hidden
example: false
bssid:
type: string
description: Network MAC address
example: "AA:BB:CC:DD:EE:FF"
WifiScanInitResponse:
type: object
required:
- status
- message
properties:
status:
type: string
description: Scan status
example: "scanning"
message:
type: string
description: Status message
example: "WiFi scan started"
WifiConfigResponse:
type: object
required:
- status
- message
- connected
properties:
status:
type: string
description: Configuration status
example: "success"
message:
type: string
description: Status message
example: "WiFi configuration updated"
connected:
type: boolean
description: Whether connection was successful
example: true
ip:
type: string
format: ipv4
description: Assigned IP address (if connected)
example: "192.168.1.100"
NeoPixelStatusResponse:
type: object
required:
- pin
- count
- interval_ms
- brightness
- pattern
properties:
pin:
type: integer
description: GPIO pin number
example: 2
count:
type: integer
description: Number of LEDs in strip
example: 16
interval_ms:
type: integer
description: Update interval in milliseconds
example: 100
brightness:
type: integer
minimum: 0
maximum: 255
description: Current brightness level
example: 50
pattern:
type: string
description: Current pattern name
example: "rainbow"
NeoPixelControlResponse:
type: object
required:
- ok
- pattern
- interval_ms
- brightness
properties:
ok:
type: boolean
description: Whether control was successful
example: true
pattern:
type: string
description: Current pattern name
example: "rainbow"
interval_ms:
type: integer
description: Update interval in milliseconds
example: 100
brightness:
type: integer
description: Current brightness level
example: 50
RelayStatusResponse:
type: object
required:
- pin
- state
- uptime
properties:
pin:
type: integer
description: GPIO pin number
example: 5
state:
type: string
enum: [on, off]
description: Current relay state
example: "off"
uptime:
type: integer
description: System uptime in milliseconds
example: 12345
RelayControlResponse:
type: object
required:
- success
- state
properties:
success:
type: boolean
description: Whether control was successful
example: true
state:
type: string
enum: [on, off]
description: Current relay state
example: "on"
message:
type: string
description: Error message (if unsuccessful)
example: "Invalid state. Use: on, off, or toggle"
NeoPatternStatusResponse:
type: object
required:
- pin
- count
- interval_ms
- brightness
- pattern
- total_steps
- color1
- color2
properties:
pin:
type: integer
description: GPIO pin number
example: 2
count:
type: integer
description: Number of LEDs
example: 16
interval_ms:
type: integer
description: Update interval in milliseconds
example: 100
brightness:
type: integer
minimum: 0
maximum: 255
description: Current brightness level
example: 50
pattern:
type: string
description: Current pattern name
example: "rainbow_cycle"
total_steps:
type: integer
description: Pattern step count
example: 32
color1:
type: integer
description: Primary color value
example: 16711680
color2:
type: integer
description: Secondary color value
example: 255
NeoPatternControlResponse:
type: object
required:
- ok
- pattern
- interval_ms
- brightness
properties:
ok:
type: boolean
description: Whether control was successful
example: true
pattern:
type: string
description: Current pattern name
example: "rainbow_cycle"
interval_ms:
type: integer
description: Update interval in milliseconds
example: 100
brightness:
type: integer
description: Current brightness level
example: 50
ApiEndpoint:
type: object
required:
@@ -663,6 +1502,10 @@ tags:
description: Multi-node cluster coordination and health monitoring
- name: System Management
description: System-level operations like updates and restarts
- name: Network Management
description: WiFi and network configuration and monitoring
- name: Hardware Services
description: Hardware control services for LEDs, relays, and other peripherals
externalDocs:
description: SPORE Project Documentation

7
ctl.sh
View File

@@ -14,8 +14,7 @@ function build {
pio run -e $1
}
function all {
target esp01_1m
target d1_mini
pio run
}
${@:-all}
}
@@ -51,4 +50,8 @@ function cluster {
${@:-info}
}
function monitor {
pio run --target monitor
}
${@:-info}

View File

@@ -16,10 +16,33 @@ The SPORE system provides a comprehensive RESTful API for monitoring and control
| Endpoint | Method | Description | Response |
|----------|--------|-------------|----------|
| `/api/node/status` | GET | System resource information and API endpoint registry | System metrics and API catalog |
| `/api/node/capabilities` | GET | API endpoint capabilities and parameters | Detailed endpoint specifications |
| `/api/cluster/members` | GET | Cluster membership and node health information | Cluster topology and health status |
| `/api/node/update` | POST | Handle firmware updates via OTA | Update progress and status |
| `/api/node/restart` | POST | Trigger system restart | Restart confirmation |
### Network Management API
| Endpoint | Method | Description | Response |
|----------|--------|-------------|----------|
| `/api/network/status` | GET | WiFi and network status information | Network configuration and status |
| `/api/network/wifi/scan` | GET | Get available WiFi networks | List of discovered networks |
| `/api/network/wifi/scan` | POST | Trigger WiFi network scan | Scan initiation confirmation |
| `/api/network/wifi/config` | POST | Configure WiFi connection | Connection status and result |
### Hardware Services API
| Endpoint | Method | Description | Response |
|----------|--------|-------------|----------|
| `/api/neopixel/status` | GET | NeoPixel LED strip status | LED configuration and state |
| `/api/neopixel` | POST | NeoPixel pattern and color control | Control confirmation |
| `/api/neopixel/patterns` | GET | Available LED patterns | List of supported patterns |
| `/api/relay/status` | GET | Relay state and configuration | Relay pin and state |
| `/api/relay` | POST | Relay control (on/off/toggle) | Control result |
| `/api/neopattern/status` | GET | NeoPattern service status | Pattern configuration |
| `/api/neopattern` | POST | Advanced LED pattern control | Control confirmation |
| `/api/neopattern/patterns` | GET | Available pattern types | List of supported patterns |
## Detailed API Reference
### Task Management
@@ -125,8 +148,67 @@ Returns comprehensive system resource information including memory usage, chip d
- `sdkVersion`: ESP8266 SDK version
- `cpuFreqMHz`: CPU frequency in MHz
- `flashChipSize`: Flash chip size in bytes
- `labels`: Node labels and metadata (if available)
- `api`: Array of registered API endpoints
**Example Response:**
```json
{
"freeHeap": 48748,
"chipId": 12345678,
"sdkVersion": "3.1.2",
"cpuFreqMHz": 80,
"flashChipSize": 1048576,
"labels": {
"location": "kitchen",
"type": "sensor"
}
}
```
#### GET /api/node/capabilities
Returns detailed information about all available API endpoints, including their parameters, types, and validation rules.
**Response Fields:**
- `endpoints[]`: Array of endpoint capability objects
- `uri`: Endpoint URI path
- `method`: HTTP method (GET, POST, etc.)
- `params[]`: Parameter specifications (if applicable)
- `name`: Parameter name
- `location`: Parameter location (body, query, etc.)
- `required`: Whether parameter is required
- `type`: Parameter data type
- `values[]`: Allowed values (for enums)
- `default`: Default value
**Example Response:**
```json
{
"endpoints": [
{
"uri": "/api/tasks/control",
"method": "POST",
"params": [
{
"name": "task",
"location": "body",
"required": true,
"type": "string"
},
{
"name": "action",
"location": "body",
"required": true,
"type": "string",
"values": ["enable", "disable", "start", "stop", "status"]
}
]
}
]
}
```
#### GET /api/cluster/members
Returns information about all nodes in the cluster, including their health status, resources, and API endpoints.
@@ -154,6 +236,225 @@ Initiates an over-the-air firmware update. The firmware file should be uploaded
Triggers a system restart. The response will be sent before the restart occurs.
### Network Management
#### GET /api/network/status
Returns comprehensive WiFi and network status information.
**Response Fields:**
- `wifi.connected`: Whether WiFi is connected
- `wifi.mode`: WiFi mode (STA or AP)
- `wifi.ssid`: Connected network SSID
- `wifi.ip`: Local IP address
- `wifi.mac`: MAC address
- `wifi.hostname`: Device hostname
- `wifi.rssi`: Signal strength
- `wifi.ap_ip`: Access point IP (if in AP mode)
- `wifi.ap_mac`: Access point MAC (if in AP mode)
- `wifi.stations_connected`: Number of connected stations (if in AP mode)
**Example Response:**
```json
{
"wifi": {
"connected": true,
"mode": "STA",
"ssid": "MyNetwork",
"ip": "192.168.1.100",
"mac": "AA:BB:CC:DD:EE:FF",
"hostname": "spore-node-1",
"rssi": -45
}
}
```
#### GET /api/network/wifi/scan
Returns a list of available WiFi networks discovered during the last scan.
**Response Fields:**
- `access_points[]`: Array of discovered networks
- `ssid`: Network name
- `rssi`: Signal strength
- `channel`: WiFi channel
- `encryption_type`: Security type
- `hidden`: Whether network is hidden
- `bssid`: Network MAC address
**Example Response:**
```json
{
"access_points": [
{
"ssid": "MyNetwork",
"rssi": -45,
"channel": 6,
"encryption_type": 4,
"hidden": false,
"bssid": "AA:BB:CC:DD:EE:FF"
}
]
}
```
#### POST /api/network/wifi/scan
Initiates a new WiFi network scan.
**Response:**
```json
{
"status": "scanning",
"message": "WiFi scan started"
}
```
#### POST /api/network/wifi/config
Configures WiFi connection with new credentials.
**Parameters:**
- `ssid` (required): Network SSID
- `password` (required): Network password
- `connect_timeout_ms` (optional): Connection timeout in milliseconds (default: 10000)
- `retry_delay_ms` (optional): Retry delay in milliseconds (default: 500)
**Response:**
```json
{
"status": "success",
"message": "WiFi configuration updated",
"connected": true,
"ip": "192.168.1.100"
}
```
### Hardware Services
#### NeoPixel LED Control
##### GET /api/neopixel/status
Returns current NeoPixel LED strip status and configuration.
**Response Fields:**
- `pin`: GPIO pin number
- `count`: Number of LEDs in strip
- `interval_ms`: Update interval in milliseconds
- `brightness`: Current brightness (0-255)
- `pattern`: Current pattern name
**Example Response:**
```json
{
"pin": 2,
"count": 16,
"interval_ms": 100,
"brightness": 50,
"pattern": "rainbow"
}
```
##### GET /api/neopixel/patterns
Returns list of available LED patterns.
**Response:**
```json
["off", "color_wipe", "rainbow", "rainbow_cycle", "theater_chase", "theater_chase_rainbow"]
```
##### POST /api/neopixel
Controls NeoPixel LED strip patterns and colors.
**Parameters:**
- `pattern` (optional): Pattern name
- `interval_ms` (optional): Update interval in milliseconds
- `brightness` (optional): Brightness level (0-255)
- `color` (optional): Primary color (hex value)
- `r`, `g`, `b` (optional): RGB color values
- `color2` (optional): Secondary color (hex value)
- `r2`, `g2`, `b2` (optional): Secondary RGB values
**Example Request:**
```bash
curl -X POST http://192.168.1.100/api/neopixel \
-d "pattern=rainbow&brightness=100&interval_ms=50"
```
#### Relay Control
##### GET /api/relay/status
Returns current relay status and configuration.
**Response Fields:**
- `pin`: GPIO pin number
- `state`: Current state (on/off)
- `uptime`: System uptime in milliseconds
**Example Response:**
```json
{
"pin": 5,
"state": "off",
"uptime": 12345
}
```
##### POST /api/relay
Controls relay state.
**Parameters:**
- `state` (required): Desired state (on, off, toggle)
**Example Request:**
```bash
curl -X POST http://192.168.1.100/api/relay \
-d "state=on"
```
#### NeoPattern Service
##### GET /api/neopattern/status
Returns NeoPattern service status and configuration.
**Response Fields:**
- `pin`: GPIO pin number
- `count`: Number of LEDs
- `interval_ms`: Update interval
- `brightness`: Current brightness
- `pattern`: Current pattern name
- `total_steps`: Pattern step count
- `color1`: Primary color
- `color2`: Secondary color
##### GET /api/neopattern/patterns
Returns available pattern types.
**Response:**
```json
["off", "rainbow_cycle", "theater_chase", "color_wipe", "scanner", "fade", "fire"]
```
##### POST /api/neopattern
Controls advanced LED patterns.
**Parameters:**
- `pattern` (optional): Pattern name
- `interval_ms` (optional): Update interval
- `brightness` (optional): Brightness level
- `color`, `color2` (optional): Color values
- `r`, `g`, `b`, `r2`, `g2`, `b2` (optional): RGB values
- `total_steps` (optional): Pattern step count
- `direction` (optional): Pattern direction (forward/reverse)
## HTTP Status Codes
| Code | Description | Use Case |

View File

@@ -7,6 +7,12 @@
#include "ApiServer.h"
#include "TaskManager.h"
// Services
#include "services/NodeService.h"
#include "services/NetworkService.h"
#include "services/ClusterService.h"
#include "services/TaskService.h"
using namespace std;
NodeContext ctx({
@@ -18,6 +24,12 @@ TaskManager taskManager(ctx);
ClusterManager cluster(ctx, taskManager);
ApiServer apiServer(ctx, taskManager, ctx.config.api_server_port);
// Create services
NodeService nodeService(ctx);
NetworkService networkService(network);
ClusterService clusterService(ctx);
TaskService taskService(taskManager);
void setup() {
Serial.begin(115200);
@@ -27,7 +39,11 @@ void setup() {
// Initialize and start all tasks
taskManager.initialize();
// Start the API server
// Register services and start API server
apiServer.addService(nodeService);
apiServer.addService(networkService);
apiServer.addService(clusterService);
apiServer.addService(taskService);
apiServer.begin();
// Print initial task status

View File

@@ -0,0 +1,470 @@
/**
* Original NeoPattern code by Bill Earl
* https://learn.adafruit.com/multi-tasking-the-arduino-part-3/overview
*
* TODO
* - cleanup the mess
* - fnc table for patterns to replace switch case
*
* Custom modifications by 0x1d:
* - default OnComplete callback that sets pattern to reverse
* - separate animation update from timer; Update now updates directly, UpdateScheduled uses timer
*/
#ifndef __NeoPattern_INCLUDED__
#define __NeoPattern_INCLUDED__
#include <Adafruit_NeoPixel.h>
using namespace std;
// Pattern types supported:
enum pattern
{
NONE = 0,
RAINBOW_CYCLE = 1,
THEATER_CHASE = 2,
COLOR_WIPE = 3,
SCANNER = 4,
FADE = 5,
FIRE = 6
};
// Patern directions supported:
enum direction
{
FORWARD,
REVERSE
};
// NeoPattern Class - derived from the Adafruit_NeoPixel class
class NeoPattern : public Adafruit_NeoPixel
{
public:
// Member Variables:
pattern ActivePattern = RAINBOW_CYCLE; // which pattern is running
direction Direction = FORWARD; // direction to run the pattern
unsigned long Interval = 150; // milliseconds between updates
unsigned long lastUpdate = 0; // last update of position
uint32_t Color1 = 0;
uint32_t Color2 = 0; // What colors are in use
uint16_t TotalSteps = 32; // total number of steps in the pattern
uint16_t Index; // current step within the pattern
uint16_t completed = 0;
// FIXME return current NeoPatternState
void (*OnComplete)(int); // Callback on completion of pattern
uint8_t *frameBuffer;
int bufferSize = 0;
// Constructor - calls base-class constructor to initialize strip
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(int))
: Adafruit_NeoPixel(pixels, pin, type)
{
frameBuffer = (uint8_t *)malloc(768);
OnComplete = callback;
TotalSteps = numPixels();
begin();
}
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type)
: Adafruit_NeoPixel(pixels, pin, type)
{
frameBuffer = (uint8_t *)malloc(768);
TotalSteps = numPixels();
begin();
}
void handleStream(uint8_t *data, size_t len)
{
//const uint16_t *data16 = (uint16_t *)data;
bufferSize = len;
memcpy(frameBuffer, data, len);
}
void drawFrameBuffer(int w, uint8_t *frame, int length)
{
for (int i = 0; i < length; i++)
{
uint8_t r = frame[i];
uint8_t g = frame[i + 1];
uint8_t b = frame[i + 2];
setPixelColor(i, r, g, b);
}
}
void onCompleteDefault(int pixels)
{
//Serial.println("onCompleteDefault");
// FIXME no specific code
if (ActivePattern == THEATER_CHASE)
{
return;
}
Reverse();
//Serial.println("pattern completed");
}
// Update the pattern
void Update()
{
switch (ActivePattern)
{
case RAINBOW_CYCLE:
RainbowCycleUpdate();
break;
case THEATER_CHASE:
TheaterChaseUpdate();
break;
case COLOR_WIPE:
ColorWipeUpdate();
break;
case SCANNER:
ScannerUpdate();
break;
case FADE:
FadeUpdate();
break;
case FIRE:
Fire(50, 120);
break;
default:
if (bufferSize > 0)
{
drawFrameBuffer(TotalSteps, frameBuffer, bufferSize);
}
break;
}
}
void UpdateScheduled()
{
if ((millis() - lastUpdate) > Interval) // time to update
{
lastUpdate = millis();
Update();
}
}
// Increment the Index and reset at the end
void Increment()
{
completed = 0;
if (Direction == FORWARD)
{
Index++;
if (Index >= TotalSteps)
{
Index = 0;
completed = 1;
if (OnComplete != NULL)
{
OnComplete(numPixels()); // call the comlpetion callback
}
else
{
onCompleteDefault(numPixels());
}
}
}
else // Direction == REVERSE
{
--Index;
if (Index <= 0)
{
Index = TotalSteps - 1;
completed = 1;
if (OnComplete != NULL)
{
OnComplete(numPixels()); // call the comlpetion callback
}
else
{
onCompleteDefault(numPixels());
}
}
}
}
// Reverse pattern direction
void Reverse()
{
if (Direction == FORWARD)
{
Direction = REVERSE;
Index = TotalSteps - 1;
}
else
{
Direction = FORWARD;
Index = 0;
}
}
// Initialize for a RainbowCycle
void RainbowCycle(uint8_t interval, direction dir = FORWARD)
{
ActivePattern = RAINBOW_CYCLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
Direction = dir;
}
// Update the Rainbow Cycle Pattern
void RainbowCycleUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
}
show();
Increment();
}
// Initialize for a Theater Chase
void TheaterChase(uint32_t color1, uint32_t color2, uint16_t interval, direction dir = FORWARD)
{
ActivePattern = THEATER_CHASE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Theater Chase Pattern
void TheaterChaseUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 3 == 0)
{
setPixelColor(i, Color1);
}
else
{
setPixelColor(i, Color2);
}
}
show();
Increment();
}
// Initialize for a ColorWipe
void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD)
{
ActivePattern = COLOR_WIPE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color;
Index = 0;
Direction = dir;
}
// Update the Color Wipe Pattern
void ColorWipeUpdate()
{
setPixelColor(Index, Color1);
show();
Increment();
}
// Initialize for a SCANNNER
void Scanner(uint32_t color1, uint8_t interval)
{
ActivePattern = SCANNER;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = 0;
}
// Update the Scanner Pattern
void ScannerUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
if (i == Index) // Scan Pixel to the right
{
setPixelColor(i, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(i, Color1);
}
else // Fading tail
{
setPixelColor(i, DimColor(getPixelColor(i)));
}
}
show();
Increment();
}
// Initialize for a Fade
void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD)
{
ActivePattern = FADE;
Interval = interval;
TotalSteps = steps;
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Fade Pattern
void FadeUpdate()
{
// Calculate linear interpolation between Color1 and Color2
// Optimise order of operations to minimize truncation error
uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
ColorSet(Color(red, green, blue));
show();
Increment();
}
// Calculate 50% dimmed version of a color (used by ScannerUpdate)
uint32_t DimColor(uint32_t color)
{
// Shift R, G and B components one bit to the right
uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
return dimColor;
}
// Set all pixels to a color (synchronously)
void ColorSet(uint32_t color)
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, color);
}
show();
}
// Returns the Red component of a 32-bit color
uint8_t Red(uint32_t color)
{
return (color >> 16) & 0xFF;
}
// Returns the Green component of a 32-bit color
uint8_t Green(uint32_t color)
{
return (color >> 8) & 0xFF;
}
// Returns the Blue component of a 32-bit color
uint8_t Blue(uint32_t color)
{
return color & 0xFF;
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t Wheel(uint8_t WheelPos)
{
//if(WheelPos == 0) return Color(0,0,0);
WheelPos = 255 - WheelPos;
if (WheelPos < 85)
{
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
else if (WheelPos < 170)
{
WheelPos -= 85;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
else
{
WheelPos -= 170;
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
/**
* Effects from https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/
*/
void Fire(int Cooling, int Sparking)
{
uint8_t heat[numPixels()];
int cooldown;
// Step 1. Cool down every cell a little
for (int i = 0; i < numPixels(); i++)
{
cooldown = random(0, ((Cooling * 10) / numPixels()) + 2);
if (cooldown > heat[i])
{
heat[i] = 0;
}
else
{
heat[i] = heat[i] - cooldown;
}
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for (int k = numPixels() - 1; k >= 2; k--)
{
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}
// Step 3. Randomly ignite new 'sparks' near the bottom
if (random(255) < Sparking)
{
int y = random(7);
heat[y] = heat[y] + random(160, 255);
//heat[y] = random(160,255);
}
// Step 4. Convert heat to LED colors
for (int j = 0; j < numPixels(); j++)
{
setPixelHeatColor(j, heat[j]);
}
showStrip();
}
void setPixelHeatColor(int Pixel, uint8_t temperature)
{
// Scale 'heat' down from 0-255 to 0-191
uint8_t t192 = round((temperature / 255.0) * 191);
// calculate ramp up from
uint8_t heatramp = t192 & 0x3F; // 0..63
heatramp <<= 2; // scale up to 0..252
// figure out which third of the spectrum we're in:
if (t192 > 0x80)
{ // hottest
setPixel(Pixel, 255, 255, heatramp);
}
else if (t192 > 0x40)
{ // middle
setPixel(Pixel, 255, heatramp, 0);
}
else
{ // coolest
setPixel(Pixel, heatramp, 0, 0);
}
}
void setPixel(int Pixel, uint8_t red, uint8_t green, uint8_t blue)
{
setPixelColor(Pixel, Color(red, green, blue));
}
void showStrip()
{
show();
}
};
#endif

View File

@@ -0,0 +1,187 @@
#include "NeoPatternService.h"
#include "ApiServer.h"
NeoPatternService::NeoPatternService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, uint8_t type)
: taskManager(taskMgr),
pixels(numPixels, pin, type),
updateIntervalMs(100),
brightness(48) {
pixels.setBrightness(brightness);
pixels.show();
registerTasks();
setPatternByName("rainbow_cycle");
}
void NeoPatternService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/neopattern/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/neopattern/patterns", HTTP_GET,
[this](AsyncWebServerRequest* request) { handlePatternsRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/neopattern", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{String("pattern"), false, String("body"), String("string"), patternNamesVector()},
ParamSpec{String("interval_ms"), false, String("body"), String("number"), {}, String("100")},
ParamSpec{String("brightness"), false, String("body"), String("number"), {}, String("50")},
ParamSpec{String("color"), false, String("body"), String("color"), {}},
ParamSpec{String("color2"), false, String("body"), String("color"), {}},
ParamSpec{String("r"), false, String("body"), String("number"), {}},
ParamSpec{String("g"), false, String("body"), String("number"), {}},
ParamSpec{String("b"), false, String("body"), String("number"), {}},
ParamSpec{String("r2"), false, String("body"), String("number"), {}},
ParamSpec{String("g2"), false, String("body"), String("number"), {}},
ParamSpec{String("b2"), false, String("body"), String("number"), {}},
ParamSpec{String("total_steps"), false, String("body"), String("number"), {}},
ParamSpec{String("direction"), false, String("body"), String("string"), {String("forward"), String("reverse")}}
});
}
void NeoPatternService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
doc["pin"] = pixels.getPin();
doc["count"] = pixels.numPixels();
doc["interval_ms"] = updateIntervalMs;
doc["brightness"] = brightness;
doc["pattern"] = currentPatternName();
doc["total_steps"] = pixels.TotalSteps;
doc["color1"] = pixels.Color1;
doc["color2"] = pixels.Color2;
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPatternService::handlePatternsRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
JsonArray arr = doc.to<JsonArray>();
for (auto& kv : patternSetters) arr.add(kv.first);
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPatternService::handleControlRequest(AsyncWebServerRequest* request) {
if (request->hasParam("pattern", true)) {
String name = request->getParam("pattern", true)->value();
setPatternByName(name);
}
if (request->hasParam("interval_ms", true)) {
unsigned long v = request->getParam("interval_ms", true)->value().toInt();
if (v < 1) v = 1;
updateIntervalMs = v;
taskManager.setTaskInterval("neopattern_update", updateIntervalMs);
}
if (request->hasParam("brightness", true)) {
int b = request->getParam("brightness", true)->value().toInt();
if (b < 0) b = 0; if (b > 255) b = 255;
setBrightness((uint8_t)b);
}
// Accept packed color ints or r,g,b triplets
if (request->hasParam("color", true)) {
pixels.Color1 = (uint32_t)strtoul(request->getParam("color", true)->value().c_str(), nullptr, 0);
}
if (request->hasParam("color2", true)) {
pixels.Color2 = (uint32_t)strtoul(request->getParam("color2", true)->value().c_str(), nullptr, 0);
}
if (request->hasParam("r", true) || request->hasParam("g", true) || request->hasParam("b", true)) {
int r = request->hasParam("r", true) ? request->getParam("r", true)->value().toInt() : 0;
int g = request->hasParam("g", true) ? request->getParam("g", true)->value().toInt() : 0;
int b = request->hasParam("b", true) ? request->getParam("b", true)->value().toInt() : 0;
pixels.Color1 = pixels.Color(r, g, b);
}
if (request->hasParam("r2", true) || request->hasParam("g2", true) || request->hasParam("b2", true)) {
int r = request->hasParam("r2", true) ? request->getParam("r2", true)->value().toInt() : 0;
int g = request->hasParam("g2", true) ? request->getParam("g2", true)->value().toInt() : 0;
int b = request->hasParam("b2", true) ? request->getParam("b2", true)->value().toInt() : 0;
pixels.Color2 = pixels.Color(r, g, b);
}
if (request->hasParam("total_steps", true)) {
pixels.TotalSteps = request->getParam("total_steps", true)->value().toInt();
}
if (request->hasParam("direction", true)) {
String dir = request->getParam("direction", true)->value();
if (dir.equalsIgnoreCase("forward")) pixels.Direction = FORWARD;
else if (dir.equalsIgnoreCase("reverse")) pixels.Direction = REVERSE;
}
JsonDocument resp;
resp["ok"] = true;
resp["pattern"] = currentPatternName();
resp["interval_ms"] = updateIntervalMs;
resp["brightness"] = brightness;
String json;
serializeJson(resp, json);
request->send(200, "application/json", json);
}
void NeoPatternService::setBrightness(uint8_t b) {
brightness = b;
pixels.setBrightness(brightness);
pixels.show();
}
void NeoPatternService::registerTasks() {
taskManager.registerTask("neopattern_update", updateIntervalMs, [this]() { update(); });
taskManager.registerTask("neopattern_status_print", 10000, [this]() {
Serial.printf("[NeoPattern] pattern=%s interval=%lu ms brightness=%u\n",
currentPatternName().c_str(), updateIntervalMs, brightness);
});
}
void NeoPatternService::registerPatterns() {
patternSetters["off"] = [this]() { pixels.ActivePattern = NONE; };
patternSetters["rainbow_cycle"] = [this]() { pixels.RainbowCycle(updateIntervalMs); };
patternSetters["theater_chase"] = [this]() { pixels.TheaterChase(pixels.Color1 ? pixels.Color1 : pixels.Color(127,127,127), pixels.Color2, updateIntervalMs); };
patternSetters["color_wipe"] = [this]() { pixels.ColorWipe(pixels.Color1 ? pixels.Color1 : pixels.Color(255,0,0), updateIntervalMs); };
patternSetters["scanner"] = [this]() { pixels.Scanner(pixels.Color1 ? pixels.Color1 : pixels.Color(0,0,255), updateIntervalMs); };
patternSetters["fade"] = [this]() { pixels.Fade(pixels.Color1, pixels.Color2, pixels.TotalSteps ? pixels.TotalSteps : 32, updateIntervalMs); };
patternSetters["fire"] = [this]() { pixels.ActivePattern = FIRE; pixels.Interval = updateIntervalMs; };
}
std::vector<String> NeoPatternService::patternNamesVector() {
if (patternSetters.empty()) registerPatterns();
std::vector<String> v;
v.reserve(patternSetters.size());
for (const auto& kv : patternSetters) v.push_back(kv.first);
return v;
}
String NeoPatternService::currentPatternName() {
switch (pixels.ActivePattern) {
case NONE: return String("off");
case RAINBOW_CYCLE: return String("rainbow_cycle");
case THEATER_CHASE: return String("theater_chase");
case COLOR_WIPE: return String("color_wipe");
case SCANNER: return String("scanner");
case FADE: return String("fade");
case FIRE: return String("fire");
}
return String("off");
}
void NeoPatternService::setPatternByName(const String& name) {
if (patternSetters.empty()) registerPatterns();
auto it = patternSetters.find(name);
if (it != patternSetters.end()) {
pixels.Index = 0;
pixels.Direction = FORWARD;
it->second();
}
}
void NeoPatternService::update() {
pixels.Update();
}

View File

@@ -0,0 +1,34 @@
#pragma once
#include "services/Service.h"
#include "TaskManager.h"
#include "NeoPattern.cpp"
#include <map>
#include <vector>
class NeoPatternService : public Service {
public:
NeoPatternService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, uint8_t type);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "NeoPattern"; }
void setBrightness(uint8_t b);
void setPatternByName(const String& name);
private:
void registerTasks();
void registerPatterns();
std::vector<String> patternNamesVector();
String currentPatternName();
void update();
// Handlers
void handleStatusRequest(AsyncWebServerRequest* request);
void handlePatternsRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
TaskManager& taskManager;
NeoPattern pixels;
unsigned long updateIntervalMs;
uint8_t brightness;
std::map<String, std::function<void()>> patternSetters;
};

View File

@@ -0,0 +1,31 @@
#ifndef __DEVICE_CONFIG__
#define __DEVICE_CONFIG__
// Scheduler config
#define _TASK_SLEEP_ON_IDLE_RUN
#define _TASK_STD_FUNCTION
#define _TASK_PRIORITY
// Chip config
#define SPROCKET_TYPE "SPROCKET"
#define SERIAL_BAUD_RATE 115200
#define STARTUP_DELAY 1000
// network config
#define SPROCKET_MODE 1
#define WIFI_CHANNEL 11
#define AP_SSID "sprocket"
#define AP_PASSWORD "th3r31sn0sp00n"
#define STATION_SSID "MyAP"
#define STATION_PASSWORD "th3r31sn0sp00n"
#define HOSTNAME "sprocket"
#define CONNECT_TIMEOUT 10000
// NeoPixel conig
#define LED_STRIP_PIN D2
#define LED_STRIP_LENGTH 8
#define LED_STRIP_BRIGHTNESS 48
#define LED_STRIP_UPDATE_INTERVAL 200
#define LED_STRIP_DEFAULT_COLOR 100
#endif

View File

@@ -0,0 +1,71 @@
#include <Arduino.h>
#include <functional>
#include "Globals.h"
#include "NodeContext.h"
#include "NetworkManager.h"
#include "ClusterManager.h"
#include "ApiServer.h"
#include "TaskManager.h"
// Services
#include "services/NodeService.h"
#include "services/NetworkService.h"
#include "services/ClusterService.h"
#include "services/TaskService.h"
#include "NeoPatternService.h"
#ifndef LED_STRIP_PIN
#define LED_STRIP_PIN 2
#endif
#ifndef LED_STRIP_LENGTH
#define LED_STRIP_LENGTH 8
#endif
#ifndef LED_STRIP_TYPE
#define LED_STRIP_TYPE (NEO_GRB + NEO_KHZ800)
#endif
NodeContext ctx({
{"app", "neopattern"},
{"device", "light"},
{"pixels", String(LED_STRIP_LENGTH)},
{"pin", String(LED_STRIP_PIN)}
});
NetworkManager network(ctx);
TaskManager taskManager(ctx);
ClusterManager cluster(ctx, taskManager);
ApiServer apiServer(ctx, taskManager, ctx.config.api_server_port);
// Create services
NodeService nodeService(ctx);
NetworkService networkService(network);
ClusterService clusterService(ctx);
TaskService taskService(taskManager);
NeoPatternService neoPatternService(taskManager, LED_STRIP_LENGTH, LED_STRIP_PIN, LED_STRIP_TYPE);
void setup() {
Serial.begin(115200);
// Setup WiFi first
network.setupWiFi();
// Initialize and start all tasks
taskManager.initialize();
// Register services and start API server
apiServer.addService(nodeService);
apiServer.addService(networkService);
apiServer.addService(clusterService);
apiServer.addService(taskService);
apiServer.addService(neoPatternService);
apiServer.begin();
// Print initial task status
taskManager.printTaskStatus();
}
void loop() {
taskManager.execute();
yield();
}

View File

@@ -0,0 +1,291 @@
#include "NeoPixelService.h"
#include "ApiServer.h"
// Wheel helper: map 0-255 to RGB rainbow
static uint32_t colorWheel(Adafruit_NeoPixel& strip, uint8_t pos) {
pos = 255 - pos;
if (pos < 85) {
return strip.Color(255 - pos * 3, 0, pos * 3);
}
if (pos < 170) {
pos -= 85;
return strip.Color(0, pos * 3, 255 - pos * 3);
}
pos -= 170;
return strip.Color(pos * 3, 255 - pos * 3, 0);
}
NeoPixelService::NeoPixelService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, neoPixelType type)
: taskManager(taskMgr),
strip(numPixels, pin, type),
currentPattern(Pattern::Off),
updateIntervalMs(20),
lastUpdateMs(0),
wipeIndex(0),
wipeColor(strip.Color(255, 0, 0)),
rainbowJ(0),
cycleJ(0),
chaseJ(0),
chaseQ(0),
chasePhaseOn(true),
chaseColor(strip.Color(127, 127, 127)),
brightness(50) {
strip.begin();
strip.setBrightness(brightness);
strip.show();
registerPatterns();
registerTasks();
}
void NeoPixelService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/neopixel/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/neopixel/patterns", HTTP_GET,
[this](AsyncWebServerRequest* request) { handlePatternsRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/neopixel", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{String("pattern"), false, String("body"), String("string"), patternNamesVector()},
ParamSpec{String("interval_ms"), false, String("body"), String("number"), {}, String("100")},
ParamSpec{String("brightness"), false, String("body"), String("number"), {}, String("50")},
ParamSpec{String("color"), false, String("body"), String("color"), {}},
ParamSpec{String("color2"), false, String("body"), String("color"), {}},
ParamSpec{String("r"), false, String("body"), String("number"), {}},
ParamSpec{String("g"), false, String("body"), String("number"), {}},
ParamSpec{String("b"), false, String("body"), String("number"), {}},
ParamSpec{String("r2"), false, String("body"), String("number"), {}},
ParamSpec{String("g2"), false, String("body"), String("number"), {}},
ParamSpec{String("b2"), false, String("body"), String("number"), {}},
ParamSpec{String("total_steps"), false, String("body"), String("number"), {}},
ParamSpec{String("direction"), false, String("body"), String("string"), {String("forward"), String("reverse")}}
});
}
void NeoPixelService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
doc["pin"] = strip.getPin();
doc["count"] = strip.numPixels();
doc["interval_ms"] = updateIntervalMs;
doc["brightness"] = brightness;
doc["pattern"] = currentPatternName();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPixelService::handlePatternsRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
JsonArray arr = doc.to<JsonArray>();
for (auto& kv : patternUpdaters) arr.add(kv.first);
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPixelService::handleControlRequest(AsyncWebServerRequest* request) {
if (request->hasParam("pattern", true)) {
String name = request->getParam("pattern", true)->value();
setPatternByName(name);
}
if (request->hasParam("interval_ms", true)) {
unsigned long v = request->getParam("interval_ms", true)->value().toInt();
if (v < 1) v = 1;
updateIntervalMs = v;
taskManager.setTaskInterval("neopixel_update", updateIntervalMs);
}
if (request->hasParam("brightness", true)) {
int b = request->getParam("brightness", true)->value().toInt();
if (b < 0) b = 0; if (b > 255) b = 255;
setBrightness((uint8_t)b);
}
// Accept packed color ints or r,g,b triplets
if (request->hasParam("color", true)) {
wipeColor = (uint32_t)strtoul(request->getParam("color", true)->value().c_str(), nullptr, 0);
chaseColor = wipeColor;
}
if (request->hasParam("r", true) || request->hasParam("g", true) || request->hasParam("b", true)) {
int r = request->hasParam("r", true) ? request->getParam("r", true)->value().toInt() : 0;
int g = request->hasParam("g", true) ? request->getParam("g", true)->value().toInt() : 0;
int b = request->hasParam("b", true) ? request->getParam("b", true)->value().toInt() : 0;
wipeColor = strip.Color(r, g, b);
chaseColor = strip.Color(r / 2, g / 2, b / 2); // dimmer for chase
}
JsonDocument resp;
resp["ok"] = true;
resp["pattern"] = currentPatternName();
resp["interval_ms"] = updateIntervalMs;
resp["brightness"] = brightness;
String json;
serializeJson(resp, json);
request->send(200, "application/json", json);
}
void NeoPixelService::setBrightness(uint8_t b) {
brightness = b;
strip.setBrightness(brightness);
strip.show();
}
void NeoPixelService::registerTasks() {
taskManager.registerTask("neopixel_update", updateIntervalMs, [this]() { update(); });
taskManager.registerTask("neopixel_status_print", 10000, [this]() {
Serial.printf("[NeoPixel] pattern=%s interval=%lu ms brightness=%u\n",
currentPatternName().c_str(), updateIntervalMs, brightness);
});
}
void NeoPixelService::registerPatterns() {
patternUpdaters["off"] = [this]() { updateOff(); };
patternUpdaters["color_wipe"] = [this]() { updateColorWipe(); };
patternUpdaters["rainbow"] = [this]() { updateRainbow(); };
patternUpdaters["rainbow_cycle"] = [this]() { updateRainbowCycle(); };
patternUpdaters["theater_chase"] = [this]() { updateTheaterChase(); };
patternUpdaters["theater_chase_rainbow"] = [this]() { updateTheaterChaseRainbow(); };
}
std::vector<String> NeoPixelService::patternNamesVector() const {
std::vector<String> v;
v.reserve(patternUpdaters.size());
for (const auto& kv : patternUpdaters) v.push_back(kv.first);
return v;
}
String NeoPixelService::currentPatternName() const {
switch (currentPattern) {
case Pattern::Off: return String("off");
case Pattern::ColorWipe: return String("color_wipe");
case Pattern::Rainbow: return String("rainbow");
case Pattern::RainbowCycle: return String("rainbow_cycle");
case Pattern::TheaterChase: return String("theater_chase");
case Pattern::TheaterChaseRainbow: return String("theater_chase_rainbow");
}
return String("off");
}
NeoPixelService::Pattern NeoPixelService::nameToPattern(const String& name) const {
if (name.equalsIgnoreCase("color_wipe")) return Pattern::ColorWipe;
if (name.equalsIgnoreCase("rainbow")) return Pattern::Rainbow;
if (name.equalsIgnoreCase("rainbow_cycle")) return Pattern::RainbowCycle;
if (name.equalsIgnoreCase("theater_chase")) return Pattern::TheaterChase;
if (name.equalsIgnoreCase("theater_chase_rainbow")) return Pattern::TheaterChaseRainbow;
return Pattern::Off;
}
void NeoPixelService::setPatternByName(const String& name) {
Pattern p = nameToPattern(name);
resetStateForPattern(p);
}
void NeoPixelService::resetStateForPattern(Pattern p) {
strip.clear();
strip.show();
wipeIndex = 0;
rainbowJ = 0;
cycleJ = 0;
chaseJ = 0;
chaseQ = 0;
chasePhaseOn = true;
lastUpdateMs = 0;
currentPattern = p;
}
void NeoPixelService::update() {
unsigned long now = millis();
if (now - lastUpdateMs < updateIntervalMs) return;
lastUpdateMs = now;
const String name = currentPatternName();
auto it = patternUpdaters.find(name);
if (it != patternUpdaters.end()) {
it->second();
} else {
updateOff();
}
}
void NeoPixelService::updateOff() {
strip.clear();
strip.show();
}
void NeoPixelService::updateColorWipe() {
if (wipeIndex < strip.numPixels()) {
strip.setPixelColor(wipeIndex, wipeColor);
++wipeIndex;
strip.show();
} else {
strip.clear();
wipeIndex = 0;
}
}
void NeoPixelService::updateRainbow() {
for (uint16_t i = 0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, colorWheel(strip, (i + rainbowJ) & 255));
}
strip.show();
rainbowJ = (rainbowJ + 1) & 0xFF;
}
void NeoPixelService::updateRainbowCycle() {
for (uint16_t i = 0; i < strip.numPixels(); i++) {
uint8_t pos = ((i * 256 / strip.numPixels()) + cycleJ) & 0xFF;
strip.setPixelColor(i, colorWheel(strip, pos));
}
strip.show();
cycleJ = (cycleJ + 1) & 0xFF;
}
void NeoPixelService::updateTheaterChase() {
if (chasePhaseOn) {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, chaseColor);
}
strip.show();
chasePhaseOn = false;
} else {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, 0);
}
strip.show();
chasePhaseOn = true;
chaseQ = (chaseQ + 1) % 3;
chaseJ = (chaseJ + 1) % 10;
}
}
void NeoPixelService::updateTheaterChaseRainbow() {
if (chasePhaseOn) {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, colorWheel(strip, (idx + chaseJ) % 255));
}
strip.show();
chasePhaseOn = false;
} else {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, 0);
}
strip.show();
chasePhaseOn = true;
chaseQ = (chaseQ + 1) % 3;
chaseJ = (chaseJ + 1) & 0xFF;
}
}

View File

@@ -0,0 +1,67 @@
#pragma once
#include "services/Service.h"
#include "TaskManager.h"
#include <Adafruit_NeoPixel.h>
#include <map>
#include <vector>
class NeoPixelService : public Service {
public:
enum class Pattern {
Off,
ColorWipe,
Rainbow,
RainbowCycle,
TheaterChase,
TheaterChaseRainbow
};
NeoPixelService(TaskManager& taskMgr, uint16_t numPixels, uint8_t pin, neoPixelType type);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "NeoPixel"; }
void setPatternByName(const String& name);
void setBrightness(uint8_t b);
private:
void registerTasks();
void registerPatterns();
std::vector<String> patternNamesVector() const;
String currentPatternName() const;
Pattern nameToPattern(const String& name) const;
void resetStateForPattern(Pattern p);
void update();
// Pattern updaters
void updateOff();
void updateColorWipe();
void updateRainbow();
void updateRainbowCycle();
void updateTheaterChase();
void updateTheaterChaseRainbow();
// Handlers
void handleStatusRequest(AsyncWebServerRequest* request);
void handlePatternsRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
TaskManager& taskManager;
Adafruit_NeoPixel strip;
std::map<String, std::function<void()>> patternUpdaters;
Pattern currentPattern;
unsigned long updateIntervalMs;
unsigned long lastUpdateMs;
// State for patterns
uint16_t wipeIndex;
uint32_t wipeColor;
uint8_t rainbowJ;
uint8_t cycleJ;
int chaseJ;
int chaseQ;
bool chasePhaseOn;
uint32_t chaseColor;
uint8_t brightness;
};

View File

@@ -1,9 +1,5 @@
#include <Arduino.h>
#include <functional>
#include <map>
#include <vector>
#include <Adafruit_NeoPixel.h>
#include "Globals.h"
#include "NodeContext.h"
#include "NetworkManager.h"
@@ -11,6 +7,13 @@
#include "ApiServer.h"
#include "TaskManager.h"
// Services
#include "services/NodeService.h"
#include "services/NetworkService.h"
#include "services/ClusterService.h"
#include "services/TaskService.h"
#include "NeoPixelService.h"
#ifndef NEOPIXEL_PIN
#define NEOPIXEL_PIN 2
#endif
@@ -23,348 +26,46 @@
#define NEOPIXEL_TYPE (NEO_GRB + NEO_KHZ800)
#endif
// Wheel helper: map 0-255 to RGB rainbow
static uint32_t colorWheel(Adafruit_NeoPixel &strip, uint8_t pos) {
pos = 255 - pos;
if (pos < 85) {
return strip.Color(255 - pos * 3, 0, pos * 3);
}
if (pos < 170) {
pos -= 85;
return strip.Color(0, pos * 3, 255 - pos * 3);
}
pos -= 170;
return strip.Color(pos * 3, 255 - pos * 3, 0);
}
class NeoPixelService {
public:
enum class Pattern {
Off,
ColorWipe,
Rainbow,
RainbowCycle,
TheaterChase,
TheaterChaseRainbow
};
NeoPixelService(NodeContext &ctx, TaskManager &taskMgr,
uint16_t numPixels,
uint8_t pin,
neoPixelType type)
: ctx(ctx), taskManager(taskMgr),
strip(numPixels, pin, type),
currentPattern(Pattern::Off),
updateIntervalMs(20),
lastUpdateMs(0),
wipeIndex(0),
wipeColor(strip.Color(255, 0, 0)),
rainbowJ(0),
cycleJ(0),
chaseJ(0),
chaseQ(0),
chasePhaseOn(true),
chaseColor(strip.Color(127, 127, 127)),
brightness(50) {
strip.begin();
strip.setBrightness(brightness);
strip.show();
registerPatterns();
registerTasks();
}
void registerApi(ApiServer &api) {
api.addEndpoint("/api/neopixel/status", HTTP_GET, [this](AsyncWebServerRequest *request) {
JsonDocument doc;
doc["pin"] = NEOPIXEL_PIN;
doc["count"] = strip.numPixels();
doc["interval_ms"] = updateIntervalMs;
doc["brightness"] = brightness;
doc["pattern"] = currentPatternName();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
});
api.addEndpoint("/api/neopixel/patterns", HTTP_GET, [this](AsyncWebServerRequest *request) {
JsonDocument doc;
JsonArray arr = doc.to<JsonArray>();
for (auto &kv : patternUpdaters) arr.add(kv.first);
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
});
api.addEndpoint("/api/neopixel", HTTP_POST,
[this](AsyncWebServerRequest *request) {
String pattern = request->hasParam("pattern", true) ? request->getParam("pattern", true)->value() : "";
if (pattern.length()) {
setPatternByName(pattern);
}
if (request->hasParam("interval_ms", true)) {
updateIntervalMs = request->getParam("interval_ms", true)->value().toInt();
if (updateIntervalMs < 1) updateIntervalMs = 1;
taskManager.setTaskInterval("neopixel_update", updateIntervalMs);
}
if (request->hasParam("brightness", true)) {
int b = request->getParam("brightness", true)->value().toInt();
if (b < 0) b = 0; if (b > 255) b = 255;
setBrightness((uint8_t)b);
}
// Optional RGB for color_wipe and theater_chase
if (request->hasParam("r", true) || request->hasParam("g", true) || request->hasParam("b", true)) {
int r = request->hasParam("r", true) ? request->getParam("r", true)->value().toInt() : 0;
int g = request->hasParam("g", true) ? request->getParam("g", true)->value().toInt() : 0;
int b = request->hasParam("b", true) ? request->getParam("b", true)->value().toInt() : 0;
wipeColor = strip.Color(r, g, b);
chaseColor = strip.Color(r / 2, g / 2, b / 2); // dimmer for chase
}
JsonDocument resp;
resp["ok"] = true;
resp["pattern"] = currentPatternName();
resp["interval_ms"] = updateIntervalMs;
resp["brightness"] = brightness;
String json;
serializeJson(resp, json);
request->send(200, "application/json", json);
},
std::vector<ApiServer::ParamSpec>{
ApiServer::ParamSpec{ String("pattern"), false, String("body"), String("string"), patternNamesVector() },
ApiServer::ParamSpec{ String("interval_ms"), false, String("body"), String("number"), {} },
ApiServer::ParamSpec{ String("brightness"), false, String("body"), String("number"), {} },
ApiServer::ParamSpec{ String("r"), false, String("body"), String("number"), {} },
ApiServer::ParamSpec{ String("g"), false, String("body"), String("number"), {} },
ApiServer::ParamSpec{ String("b"), false, String("body"), String("number"), {} },
}
);
}
void setPatternByName(const String &name) {
auto it = patternUpdaters.find(name);
if (it != patternUpdaters.end()) {
// Map name to enum for status and reset state
currentPattern = nameToPattern(name);
resetStateForPattern(currentPattern);
}
}
void setBrightness(uint8_t b) {
brightness = b;
strip.setBrightness(brightness);
strip.show();
}
private:
void registerTasks() {
taskManager.registerTask("neopixel_update", updateIntervalMs, [this]() { update(); });
taskManager.registerTask("neopixel_status_print", 10000, [this]() {
Serial.printf("[NeoPixel] pattern=%s interval=%lu ms brightness=%u\n",
currentPatternName().c_str(), updateIntervalMs, brightness);
});
}
void registerPatterns() {
patternUpdaters["off"] = [this]() { updateOff(); };
patternUpdaters["color_wipe"] = [this]() { updateColorWipe(); };
patternUpdaters["rainbow"] = [this]() { updateRainbow(); };
patternUpdaters["rainbow_cycle"] = [this]() { updateRainbowCycle(); };
patternUpdaters["theater_chase"] = [this]() { updateTheaterChase(); };
patternUpdaters["theater_chase_rainbow"] = [this]() { updateTheaterChaseRainbow(); };
}
std::vector<String> patternNamesVector() const {
std::vector<String> v;
v.reserve(patternUpdaters.size());
for (const auto &kv : patternUpdaters) v.push_back(kv.first);
return v;
}
String currentPatternName() const {
switch (currentPattern) {
case Pattern::Off: return String("off");
case Pattern::ColorWipe: return String("color_wipe");
case Pattern::Rainbow: return String("rainbow");
case Pattern::RainbowCycle: return String("rainbow_cycle");
case Pattern::TheaterChase: return String("theater_chase");
case Pattern::TheaterChaseRainbow: return String("theater_chase_rainbow");
}
return String("off");
}
Pattern nameToPattern(const String &name) const {
if (name.equalsIgnoreCase("color_wipe")) return Pattern::ColorWipe;
if (name.equalsIgnoreCase("rainbow")) return Pattern::Rainbow;
if (name.equalsIgnoreCase("rainbow_cycle")) return Pattern::RainbowCycle;
if (name.equalsIgnoreCase("theater_chase")) return Pattern::TheaterChase;
if (name.equalsIgnoreCase("theater_chase_rainbow")) return Pattern::TheaterChaseRainbow;
return Pattern::Off;
}
void resetStateForPattern(Pattern p) {
// Clear strip by default when changing pattern
strip.clear();
strip.show();
// Reset indexes/state variables
wipeIndex = 0;
rainbowJ = 0;
cycleJ = 0;
chaseJ = 0;
chaseQ = 0;
chasePhaseOn = true;
lastUpdateMs = 0; // force immediate update on next tick
currentPattern = p;
}
void update() {
unsigned long now = millis();
if (now - lastUpdateMs < updateIntervalMs) return;
lastUpdateMs = now;
const String name = currentPatternName();
auto it = patternUpdaters.find(name);
if (it != patternUpdaters.end()) {
it->second();
} else {
updateOff();
}
}
// Pattern updaters (non-blocking; advance a small step each call)
void updateOff() {
// Ensure off state
strip.clear();
strip.show();
}
void updateColorWipe() {
if (wipeIndex < strip.numPixels()) {
strip.setPixelColor(wipeIndex, wipeColor);
++wipeIndex;
strip.show();
} else {
// Restart
strip.clear();
wipeIndex = 0;
}
}
void updateRainbow() {
for (uint16_t i = 0; i < strip.numPixels(); i++) {
strip.setPixelColor(i, colorWheel(strip, (i + rainbowJ) & 255));
}
strip.show();
rainbowJ = (rainbowJ + 1) & 0xFF; // 0..255
}
void updateRainbowCycle() {
for (uint16_t i = 0; i < strip.numPixels(); i++) {
uint8_t pos = ((i * 256 / strip.numPixels()) + cycleJ) & 0xFF;
strip.setPixelColor(i, colorWheel(strip, pos));
}
strip.show();
cycleJ = (cycleJ + 1) & 0xFF;
}
void updateTheaterChase() {
// Phase toggles on/off for the current q offset
if (chasePhaseOn) {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, chaseColor);
}
strip.show();
chasePhaseOn = false;
} else {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, 0);
}
strip.show();
chasePhaseOn = true;
chaseQ = (chaseQ + 1) % 3; // move the crawl
chaseJ = (chaseJ + 1) % 10; // cycle count kept for status if needed
}
}
void updateTheaterChaseRainbow() {
if (chasePhaseOn) {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, colorWheel(strip, (idx + chaseJ) % 255));
}
strip.show();
chasePhaseOn = false;
} else {
for (uint16_t i = 0; i < strip.numPixels(); i += 3) {
uint16_t idx = i + chaseQ;
if (idx < strip.numPixels()) strip.setPixelColor(idx, 0);
}
strip.show();
chasePhaseOn = true;
chaseQ = (chaseQ + 1) % 3;
chaseJ = (chaseJ + 1) & 0xFF;
}
}
private:
NodeContext &ctx;
TaskManager &taskManager;
Adafruit_NeoPixel strip;
std::map<String, std::function<void()>> patternUpdaters;
Pattern currentPattern;
unsigned long updateIntervalMs;
unsigned long lastUpdateMs;
// State for patterns
uint16_t wipeIndex;
uint32_t wipeColor;
uint8_t rainbowJ;
uint8_t cycleJ;
int chaseJ;
int chaseQ;
bool chasePhaseOn;
uint32_t chaseColor;
uint8_t brightness;
};
NodeContext ctx({
{"app", "neopixel"},
{"device", "light"},
{"pixels", String(NEOPIXEL_COUNT)},
{"pin", String(NEOPIXEL_PIN)}
{"app", "neopixel"},
{"device", "light"},
{"pixels", String(NEOPIXEL_COUNT)},
{"pin", String(NEOPIXEL_PIN)}
});
NetworkManager network(ctx);
TaskManager taskManager(ctx);
ClusterManager cluster(ctx, taskManager);
ApiServer apiServer(ctx, taskManager, ctx.config.api_server_port);
NeoPixelService neoService(ctx, taskManager, NEOPIXEL_COUNT, NEOPIXEL_PIN, NEOPIXEL_TYPE);
// Create services
NodeService nodeService(ctx);
NetworkService networkService(network);
ClusterService clusterService(ctx);
TaskService taskService(taskManager);
NeoPixelService neoPixelService(taskManager, NEOPIXEL_COUNT, NEOPIXEL_PIN, NEOPIXEL_TYPE);
void setup() {
Serial.begin(115200);
Serial.begin(115200);
network.setupWiFi();
// Setup WiFi first
network.setupWiFi();
taskManager.initialize();
// Initialize and start all tasks
taskManager.initialize();
apiServer.begin();
neoService.registerApi(apiServer);
// Register services and start API server
apiServer.addService(nodeService);
apiServer.addService(networkService);
apiServer.addService(clusterService);
apiServer.addService(taskService);
apiServer.addService(neoPixelService);
apiServer.begin();
taskManager.printTaskStatus();
// Print initial task status
taskManager.printTaskStatus();
}
void loop() {
taskManager.execute();
yield();
}
taskManager.execute();
yield();
}

View File

@@ -0,0 +1,89 @@
#include "RelayService.h"
#include "ApiServer.h"
RelayService::RelayService(TaskManager& taskMgr, int pin)
: taskManager(taskMgr), relayPin(pin), relayOn(false) {
pinMode(relayPin, OUTPUT);
// Many relay modules are active LOW. Start in OFF state (relay de-energized).
digitalWrite(relayPin, HIGH);
registerTasks();
}
void RelayService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/relay/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/relay", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{String("state"), true, String("body"), String("string"),
{String("on"), String("off"), String("toggle")}}
});
}
void RelayService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
doc["pin"] = relayPin;
doc["state"] = relayOn ? "on" : "off";
doc["uptime"] = millis();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void RelayService::handleControlRequest(AsyncWebServerRequest* request) {
String state = request->hasParam("state", true) ? request->getParam("state", true)->value() : "";
bool ok = false;
if (state.equalsIgnoreCase("on")) {
turnOn();
ok = true;
} else if (state.equalsIgnoreCase("off")) {
turnOff();
ok = true;
} else if (state.equalsIgnoreCase("toggle")) {
toggle();
ok = true;
}
JsonDocument resp;
resp["success"] = ok;
resp["state"] = relayOn ? "on" : "off";
if (!ok) {
resp["message"] = "Invalid state. Use: on, off, or toggle";
}
String json;
serializeJson(resp, json);
request->send(ok ? 200 : 400, "application/json", json);
}
void RelayService::turnOn() {
relayOn = true;
// Active LOW relay
digitalWrite(relayPin, LOW);
Serial.println("[RelayService] Relay ON");
}
void RelayService::turnOff() {
relayOn = false;
digitalWrite(relayPin, HIGH);
Serial.println("[RelayService] Relay OFF");
}
void RelayService::toggle() {
if (relayOn) {
turnOff();
} else {
turnOn();
}
}
void RelayService::registerTasks() {
taskManager.registerTask("relay_status_print", 5000, [this]() {
Serial.printf("[RelayService] Status - pin: %d, state: %s\n",
relayPin, relayOn ? "ON" : "OFF");
});
}

View File

@@ -0,0 +1,25 @@
#pragma once
#include "services/Service.h"
#include "TaskManager.h"
#include <ArduinoJson.h>
class RelayService : public Service {
public:
RelayService(TaskManager& taskMgr, int pin);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Relay"; }
void turnOn();
void turnOff();
void toggle();
private:
void registerTasks();
TaskManager& taskManager;
int relayPin;
bool relayOn;
void handleStatusRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
};

View File

@@ -7,6 +7,13 @@
#include "ApiServer.h"
#include "TaskManager.h"
// Services
#include "services/NodeService.h"
#include "services/NetworkService.h"
#include "services/ClusterService.h"
#include "services/TaskService.h"
#include "RelayService.h"
using namespace std;
// Choose a default relay pin. For ESP-01 this is GPIO0. Adjust as needed for your board.
@@ -14,88 +21,6 @@ using namespace std;
#define RELAY_PIN 0
#endif
class RelayService {
public:
RelayService(NodeContext& ctx, TaskManager& taskMgr, int pin)
: ctx(ctx), taskManager(taskMgr), relayPin(pin), relayOn(false) {
pinMode(relayPin, OUTPUT);
// Many relay modules are active LOW. Start in OFF state (relay de-energized).
digitalWrite(relayPin, HIGH);
registerTasks();
}
void registerApi(ApiServer& api) {
api.addEndpoint("/api/relay/status", HTTP_GET, [this](AsyncWebServerRequest* request) {
JsonDocument doc;
doc["pin"] = relayPin;
doc["state"] = relayOn ? "on" : "off";
doc["uptime"] = millis();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
});
api.addEndpoint("/api/relay", HTTP_POST, [this](AsyncWebServerRequest* request) {
String state = request->hasParam("state", true) ? request->getParam("state", true)->value() : "";
bool ok = false;
if (state.equalsIgnoreCase("on")) {
turnOn();
ok = true;
} else if (state.equalsIgnoreCase("off")) {
turnOff();
ok = true;
} else if (state.equalsIgnoreCase("toggle")) {
toggle();
ok = true;
}
JsonDocument resp;
resp["success"] = ok;
resp["state"] = relayOn ? "on" : "off";
if (!ok) {
resp["message"] = "Invalid state. Use: on, off, or toggle";
}
String json;
serializeJson(resp, json);
request->send(ok ? 200 : 400, "application/json", json);
}, std::vector<ApiServer::ParamSpec>{ ApiServer::ParamSpec{ String("state"), true, String("body"), String("string"), { String("on"), String("off"), String("toggle") } } });
}
void turnOn() {
relayOn = true;
// Active LOW relay
digitalWrite(relayPin, LOW);
Serial.println("[RelayService] Relay ON");
}
void turnOff() {
relayOn = false;
digitalWrite(relayPin, HIGH);
Serial.println("[RelayService] Relay OFF");
}
void toggle() {
if (relayOn) {
turnOff();
} else {
turnOn();
}
}
private:
void registerTasks() {
taskManager.registerTask("relay_status_print", 5000, [this]() {
Serial.printf("[RelayService] Status - pin: %d, state: %s\n", relayPin, relayOn ? "ON" : "OFF");
});
}
NodeContext& ctx;
TaskManager& taskManager;
int relayPin;
bool relayOn;
};
NodeContext ctx({
{"app", "relay"},
{"device", "actuator"},
@@ -105,7 +30,13 @@ NetworkManager network(ctx);
TaskManager taskManager(ctx);
ClusterManager cluster(ctx, taskManager);
ApiServer apiServer(ctx, taskManager, ctx.config.api_server_port);
RelayService relayService(ctx, taskManager, RELAY_PIN);
// Create services
NodeService nodeService(ctx);
NetworkService networkService(network);
ClusterService clusterService(ctx);
TaskService taskService(taskManager);
RelayService relayService(taskManager, RELAY_PIN);
void setup() {
Serial.begin(115200);
@@ -116,9 +47,13 @@ void setup() {
// Initialize and start all tasks
taskManager.initialize();
// Start the API server and expose relay endpoints
// Register services and start API server
apiServer.addService(nodeService);
apiServer.addService(networkService);
apiServer.addService(clusterService);
apiServer.addService(taskService);
apiServer.addService(relayService);
apiServer.begin();
relayService.registerApi(apiServer);
// Print initial task status
taskManager.printTaskStatus();
@@ -127,4 +62,4 @@ void setup() {
void loop() {
taskManager.execute();
yield();
}
}

View File

@@ -10,52 +10,33 @@
#include "NodeContext.h"
#include "NodeInfo.h"
#include "TaskManager.h"
#include "ApiTypes.h"
class Service; // Forward declaration
class ApiServer {
public:
ApiServer(NodeContext& ctx, TaskManager& taskMgr, uint16_t port = 80);
void begin();
void addService(Service& service);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler);
// Minimal capability spec types and registration overloads
struct ParamSpec {
String name;
bool required;
String location; // "query" | "body" | "path" | "header"
String type; // e.g. "string", "number", "boolean"
std::vector<String> values; // optional allowed values
};
struct EndpointCapability {
String uri;
int method;
std::vector<ParamSpec> params;
};
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const std::vector<ParamSpec>& params);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const std::vector<ParamSpec>& params);
static const char* methodToStr(int method);
private:
AsyncWebServer server;
NodeContext& ctx;
TaskManager& taskManager;
std::vector<std::reference_wrapper<Service>> services;
std::vector<std::tuple<String, int>> serviceRegistry;
std::vector<EndpointCapability> capabilityRegistry;
void onClusterMembersRequest(AsyncWebServerRequest *request);
void methodToStr(const std::tuple<String, int> &endpoint, JsonObject &apiObj);
void onSystemStatusRequest(AsyncWebServerRequest *request);
void onFirmwareUpdateRequest(AsyncWebServerRequest *request);
void onFirmwareUpload(AsyncWebServerRequest *request, const String &filename, size_t index, uint8_t *data, size_t len, bool final);
void onRestartRequest(AsyncWebServerRequest *request);
// Task management endpoints
void onTaskStatusRequest(AsyncWebServerRequest *request);
void onTaskControlRequest(AsyncWebServerRequest *request);
// Capabilities endpoint
void onCapabilitiesRequest(AsyncWebServerRequest *request);
// Internal helpers
void registerServiceForLocalNode(const String& uri, int method);

18
include/ApiTypes.h Normal file
View File

@@ -0,0 +1,18 @@
#pragma once
#include <Arduino.h>
#include <vector>
struct ParamSpec {
String name;
bool required;
String location; // "query" | "body" | "path" | "header"
String type; // e.g. "string", "number", "boolean"
std::vector<String> values; // optional allowed values
String defaultValue; // optional default value (stringified)
};
struct EndpointCapability {
String uri;
int method;
std::vector<ParamSpec> params;
};

View File

@@ -1,12 +1,49 @@
#pragma once
#include "NodeContext.h"
#include <ESP8266WiFi.h>
#include <vector>
struct AccessPoint {
String ssid;
int32_t rssi;
uint8_t encryptionType;
uint8_t* bssid;
int32_t channel;
bool isHidden;
};
class NetworkManager {
public:
NetworkManager(NodeContext& ctx);
void setupWiFi();
void setHostnameFromMac();
// WiFi scanning methods
void scanWifi();
void processAccessPoints();
std::vector<AccessPoint> getAccessPoints() const;
// WiFi configuration methods
void setWiFiConfig(const String& ssid, const String& password,
uint32_t connect_timeout_ms = 10000,
uint32_t retry_delay_ms = 500);
// Network status methods
bool isConnected() const { return WiFi.isConnected(); }
String getSSID() const { return WiFi.SSID(); }
IPAddress getLocalIP() const { return WiFi.localIP(); }
String getMacAddress() const { return WiFi.macAddress(); }
String getHostname() const { return WiFi.hostname(); }
int32_t getRSSI() const { return WiFi.RSSI(); }
WiFiMode_t getMode() const { return WiFi.getMode(); }
// AP mode specific methods
IPAddress getAPIP() const { return WiFi.softAPIP(); }
String getAPMacAddress() const { return WiFi.softAPmacAddress(); }
uint8_t getConnectedStations() const { return WiFi.softAPgetStationNum(); }
private:
NodeContext& ctx;
std::vector<AccessPoint> accessPoints;
bool isScanning = false;
};

View File

@@ -7,6 +7,7 @@
#include <string>
#include <initializer_list>
#include "Config.h"
#include "ApiTypes.h"
class NodeContext {
public:
@@ -19,6 +20,7 @@ public:
NodeInfo self;
std::map<String, NodeInfo>* memberList;
Config config;
std::vector<EndpointCapability> capabilities;
using EventCallback = std::function<void(void*)>;
std::map<std::string, std::vector<EventCallback>> eventRegistry;

View File

@@ -0,0 +1,16 @@
#pragma once
#include "services/Service.h"
#include "NodeContext.h"
#include <ArduinoJson.h>
class ClusterService : public Service {
public:
ClusterService(NodeContext& ctx);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Cluster"; }
private:
NodeContext& ctx;
void handleMembersRequest(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,22 @@
#pragma once
#include "services/Service.h"
#include "NetworkManager.h"
#include "NodeContext.h"
class NetworkService : public Service {
public:
NetworkService(NetworkManager& networkManager);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Network"; }
private:
NetworkManager& networkManager;
// WiFi scanning endpoints
void handleWifiScanRequest(AsyncWebServerRequest* request);
void handleGetWifiNetworks(AsyncWebServerRequest* request);
// Network status endpoints
void handleNetworkStatus(AsyncWebServerRequest* request);
void handleSetWifiConfig(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,21 @@
#pragma once
#include "services/Service.h"
#include "NodeContext.h"
#include <ArduinoJson.h>
#include <Updater.h>
class NodeService : public Service {
public:
NodeService(NodeContext& ctx);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Node"; }
private:
NodeContext& ctx;
void handleStatusRequest(AsyncWebServerRequest* request);
void handleUpdateRequest(AsyncWebServerRequest* request);
void handleUpdateUpload(AsyncWebServerRequest* request, const String& filename, size_t index, uint8_t* data, size_t len, bool final);
void handleRestartRequest(AsyncWebServerRequest* request);
void handleCapabilitiesRequest(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,9 @@
#pragma once
#include "ApiServer.h"
class Service {
public:
virtual ~Service() = default;
virtual void registerEndpoints(ApiServer& api) = 0;
virtual const char* getName() const = 0;
};

View File

@@ -0,0 +1,17 @@
#pragma once
#include "services/Service.h"
#include "TaskManager.h"
#include <ArduinoJson.h>
class TaskService : public Service {
public:
TaskService(TaskManager& taskManager);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Task"; }
private:
TaskManager& taskManager;
void handleStatusRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
};

View File

@@ -32,6 +32,7 @@ build_src_filter =
+<examples/base/*.cpp>
+<src/*.c>
+<src/*.cpp>
+<src/services/*.cpp>
[env:d1_mini]
platform = platformio/espressif8266@^4.2.1
@@ -46,6 +47,7 @@ build_src_filter =
+<examples/base/*.cpp>
+<src/*.c>
+<src/*.cpp>
+<src/services/*.cpp>
[env:esp01_1m_relay]
platform = platformio/espressif8266@^4.2.1
@@ -61,6 +63,7 @@ build_src_filter =
+<examples/relay/*.cpp>
+<src/*.c>
+<src/*.cpp>
+<src/services/*.cpp>
[env:esp01_1m_neopixel]
platform = platformio/espressif8266@^4.2.1
@@ -77,6 +80,7 @@ build_src_filter =
+<examples/neopixel/*.cpp>
+<src/*.c>
+<src/*.cpp>
+<src/services/*.cpp>
[env:d1_mini_neopixel]
platform = platformio/espressif8266@^4.2.1
@@ -92,3 +96,38 @@ build_src_filter =
+<examples/neopixel/*.cpp>
+<src/*.c>
+<src/*.cpp>
+<src/services/*.cpp>
[env:esp01_1m_neopattern]
platform = platformio/espressif8266@^4.2.1
board = esp01_1m
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.partitions = partitions_ota_1M.csv
board_build.flash_mode = dout
board_build.flash_size = 1M
lib_deps = ${common.lib_deps}
adafruit/Adafruit NeoPixel@^1.15.1
build_flags = -DLED_STRIP_PIN=2
build_src_filter =
+<examples/neopattern/*.cpp>
+<src/*.c>
+<src/*.cpp>
+<src/services/*.cpp>
[env:d1_mini_neopattern]
platform = platformio/espressif8266@^4.2.1
board = d1_mini
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.flash_mode = dio
board_build.flash_size = 4M
lib_deps = ${common.lib_deps}
adafruit/Adafruit NeoPixel@^1.15.1
build_src_filter =
+<examples/neopattern/*.cpp>
+<src/*.c>
+<src/*.cpp>
+<src/services/*.cpp>

View File

@@ -1,8 +1,8 @@
#include "ApiServer.h"
#include "services/Service.h"
#include <algorithm>
// Shared helper for HTTP method to string
static const char* methodStrFromInt(int method) {
const char* ApiServer::methodToStr(int method) {
switch (method) {
case HTTP_GET: return "GET";
case HTTP_POST: return "POST";
@@ -39,7 +39,7 @@ void ApiServer::addEndpoint(const String& uri, int method, std::function<void(As
// Overloads that also record minimal capability specs
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const std::vector<ParamSpec>& params) {
capabilityRegistry.push_back(EndpointCapability{uri, method, params});
ctx.capabilities.push_back(EndpointCapability{uri, method, params});
registerServiceForLocalNode(uri, method);
server.on(uri.c_str(), method, requestHandler);
}
@@ -47,343 +47,22 @@ void ApiServer::addEndpoint(const String& uri, int method, std::function<void(As
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const std::vector<ParamSpec>& params) {
capabilityRegistry.push_back(EndpointCapability{uri, method, params});
ctx.capabilities.push_back(EndpointCapability{uri, method, params});
registerServiceForLocalNode(uri, method);
server.on(uri.c_str(), method, requestHandler, uploadHandler);
}
void ApiServer::begin() {
addEndpoint("/api/node/status", HTTP_GET,
std::bind(&ApiServer::onSystemStatusRequest, this, std::placeholders::_1));
addEndpoint("/api/cluster/members", HTTP_GET,
std::bind(&ApiServer::onClusterMembersRequest, this, std::placeholders::_1));
addEndpoint("/api/node/update", HTTP_POST,
std::bind(&ApiServer::onFirmwareUpdateRequest, this, std::placeholders::_1),
std::bind(&ApiServer::onFirmwareUpload, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5, std::placeholders::_6)
);
addEndpoint("/api/node/restart", HTTP_POST,
std::bind(&ApiServer::onRestartRequest, this, std::placeholders::_1));
void ApiServer::addService(Service& service) {
services.push_back(service);
Serial.printf("[API] Added service: %s\n", service.getName());
}
// New: Capabilities endpoint
addEndpoint("/api/capabilities", HTTP_GET,
std::bind(&ApiServer::onCapabilitiesRequest, this, std::placeholders::_1));
// Task management endpoints
addEndpoint("/api/tasks/status", HTTP_GET,
std::bind(&ApiServer::onTaskStatusRequest, this, std::placeholders::_1));
addEndpoint("/api/tasks/control", HTTP_POST,
std::bind(&ApiServer::onTaskControlRequest, this, std::placeholders::_1),
std::vector<ParamSpec>{
ParamSpec{String("task"), true, String("body"), String("string"), {}},
ParamSpec{String("action"), true, String("body"), String("string"), {String("enable"), String("disable"), String("start"), String("stop"), String("status")}}
}
);
void ApiServer::begin() {
// Register all service endpoints
for (auto& service : services) {
service.get().registerEndpoints(*this);
Serial.printf("[API] Registered endpoints for service: %s\n", service.get().getName());
}
server.begin();
}
void ApiServer::onSystemStatusRequest(AsyncWebServerRequest *request) {
JsonDocument doc;
doc["freeHeap"] = ESP.getFreeHeap();
doc["chipId"] = ESP.getChipId();
doc["sdkVersion"] = ESP.getSdkVersion();
doc["cpuFreqMHz"] = ESP.getCpuFreqMHz();
doc["flashChipSize"] = ESP.getFlashChipSize();
JsonArray apiArr = doc["api"].to<JsonArray>();
for (const auto& entry : serviceRegistry) {
JsonObject apiObj = apiArr.add<JsonObject>();
apiObj["uri"] = std::get<0>(entry);
apiObj["method"] = std::get<1>(entry);
}
// Include local node labels if present
if (ctx.memberList) {
auto it = ctx.memberList->find(ctx.hostname);
if (it != ctx.memberList->end()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>();
for (const auto& kv : it->second.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
} else if (!ctx.self.labels.empty()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>();
for (const auto& kv : ctx.self.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void ApiServer::onClusterMembersRequest(AsyncWebServerRequest *request) {
JsonDocument doc;
JsonArray arr = doc["members"].to<JsonArray>();
for (const auto& pair : *ctx.memberList) {
const NodeInfo& node = pair.second;
JsonObject obj = arr.add<JsonObject>();
obj["hostname"] = node.hostname;
obj["ip"] = node.ip.toString();
obj["lastSeen"] = node.lastSeen;
obj["latency"] = node.latency;
obj["status"] = statusToStr(node.status);
obj["resources"]["freeHeap"] = node.resources.freeHeap;
obj["resources"]["chipId"] = node.resources.chipId;
obj["resources"]["sdkVersion"] = node.resources.sdkVersion;
obj["resources"]["cpuFreqMHz"] = node.resources.cpuFreqMHz;
obj["resources"]["flashChipSize"] = node.resources.flashChipSize;
JsonArray apiArr = obj["api"].to<JsonArray>();
for (const auto& endpoint : node.apiEndpoints) {
JsonObject apiObj = apiArr.add<JsonObject>();
apiObj["uri"] = std::get<0>(endpoint);
methodToStr(endpoint, apiObj);
}
// Add labels if present
if (!node.labels.empty()) {
JsonObject labelsObj = obj["labels"].to<JsonObject>();
for (const auto& kv : node.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void ApiServer::methodToStr(const std::tuple<String, int> &endpoint, JsonObject &apiObj)
{
int method = std::get<1>(endpoint);
apiObj["method"] = methodStrFromInt(method);
}
void ApiServer::onFirmwareUpdateRequest(AsyncWebServerRequest *request) {
bool success = !Update.hasError();
AsyncWebServerResponse *response = request->beginResponse(200, "application/json", success ? "{\"status\": \"OK\"}" : "{\"status\": \"FAIL\"}");
response->addHeader("Connection", "close");
request->send(response);
request->onDisconnect([]() {
Serial.println("[API] Restart device");
delay(10);
ESP.restart();
});
}
void ApiServer::onFirmwareUpload(AsyncWebServerRequest *request, const String &filename, size_t index, uint8_t *data, size_t len, bool final) {
if (!index) {
Serial.print("[OTA] Update Start ");
Serial.println(filename);
Update.runAsync(true);
if(!Update.begin(request->contentLength(), U_FLASH)) {
Serial.println("[OTA] Update failed: not enough space");
Update.printError(Serial);
AsyncWebServerResponse *response = request->beginResponse(500, "application/json", "{\"status\": \"FAIL\"}");
response->addHeader("Connection", "close");
request->send(response);
return;
}
}
if (!Update.hasError()){
if (Update.write(data, len) != len) {
Update.printError(Serial);
}
}
if (final) {
if (Update.end(true)) {
if(Update.isFinished()) {
Serial.print("[OTA] Update Success with ");
Serial.print(index + len);
Serial.println("B");
} else {
Serial.println("[OTA] Update not finished");
}
} else {
Serial.print("[OTA] Update failed: ");
Update.printError(Serial);
}
}
return;
}
void ApiServer::onRestartRequest(AsyncWebServerRequest *request) {
AsyncWebServerResponse *response = request->beginResponse(200, "application/json", "{\"status\": \"restarting\"}");
response->addHeader("Connection", "close");
request->send(response);
request->onDisconnect([]() {
Serial.println("[API] Restart device");
delay(10);
ESP.restart();
});
}
void ApiServer::onTaskStatusRequest(AsyncWebServerRequest *request) {
// Use a separate document as scratch space for task statuses to avoid interfering with the response root
JsonDocument scratch;
// Get comprehensive task status from TaskManager
auto taskStatuses = taskManager.getAllTaskStatuses(scratch);
// Build response document
JsonDocument doc;
// Add summary information
JsonObject summaryObj = doc["summary"].to<JsonObject>();
summaryObj["totalTasks"] = taskStatuses.size();
summaryObj["activeTasks"] = std::count_if(taskStatuses.begin(), taskStatuses.end(),
[](const auto& pair) { return pair.second["enabled"]; });
// Add detailed task information
JsonArray tasksArr = doc["tasks"].to<JsonArray>();
for (const auto& taskPair : taskStatuses) {
JsonObject taskObj = tasksArr.add<JsonObject>();
taskObj["name"] = taskPair.first;
taskObj["interval"] = taskPair.second["interval"];
taskObj["enabled"] = taskPair.second["enabled"];
taskObj["running"] = taskPair.second["running"];
taskObj["autoStart"] = taskPair.second["autoStart"];
}
// Add system information
JsonObject systemObj = doc["system"].to<JsonObject>();
systemObj["freeHeap"] = ESP.getFreeHeap();
systemObj["uptime"] = millis();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void ApiServer::onTaskControlRequest(AsyncWebServerRequest *request) {
// Parse the request body for task control commands
if (request->hasParam("task", true) && request->hasParam("action", true)) {
String taskName = request->getParam("task", true)->value();
String action = request->getParam("action", true)->value();
bool success = false;
String message = "";
if (action == "enable") {
taskManager.enableTask(taskName.c_str());
success = true;
message = "Task enabled";
} else if (action == "disable") {
taskManager.disableTask(taskName.c_str());
success = true;
message = "Task disabled";
} else if (action == "start") {
taskManager.startTask(taskName.c_str());
success = true;
message = "Task started";
} else if (action == "stop") {
taskManager.stopTask(taskName.c_str());
success = true;
message = "Task stopped";
} else if (action == "status") {
// Get detailed status for a specific task
success = true;
message = "Task status retrieved";
// Create JsonDocument for status response
JsonDocument statusDoc;
statusDoc["success"] = success;
statusDoc["message"] = message;
statusDoc["task"] = taskName;
statusDoc["action"] = action;
// Add task details to response
statusDoc["taskDetails"] = JsonObject();
JsonObject taskDetails = statusDoc["taskDetails"];
taskDetails["name"] = taskName;
taskDetails["enabled"] = taskManager.isTaskEnabled(taskName.c_str());
taskDetails["running"] = taskManager.isTaskRunning(taskName.c_str());
taskDetails["interval"] = taskManager.getTaskInterval(taskName.c_str());
// Add system context
taskDetails["system"] = JsonObject();
JsonObject systemInfo = taskDetails["system"];
systemInfo["freeHeap"] = ESP.getFreeHeap();
systemInfo["uptime"] = millis();
String statusJson;
serializeJson(statusDoc, statusJson);
request->send(200, "application/json", statusJson);
return; // Early return since we've already sent the response
} else {
success = false;
message = "Invalid action. Use: enable, disable, start, stop, or status";
}
JsonDocument doc;
doc["success"] = success;
doc["message"] = message;
doc["task"] = taskName;
doc["action"] = action;
String json;
serializeJson(doc, json);
request->send(success ? 200 : 400, "application/json", json);
} else {
// Missing parameters
JsonDocument doc;
doc["success"] = false;
doc["message"] = "Missing parameters. Required: task, action";
doc["example"] = "{\"task\": \"discovery_send\", \"action\": \"status\"}";
String json;
serializeJson(doc, json);
request->send(400, "application/json", json);
}
}
void ApiServer::onCapabilitiesRequest(AsyncWebServerRequest *request) {
JsonDocument doc;
JsonArray endpointsArr = doc["endpoints"].to<JsonArray>();
// Track seen (uri|method) to avoid duplicates
std::vector<String> seen;
auto makeKey = [](const String& uri, int method) {
String k = uri; k += "|"; k += method; return k;
};
// Rich entries first
for (const auto& cap : capabilityRegistry) {
String key = makeKey(cap.uri, cap.method);
seen.push_back(key);
JsonObject obj = endpointsArr.add<JsonObject>();
obj["uri"] = cap.uri;
obj["method"] = methodStrFromInt(cap.method);
if (!cap.params.empty()) {
JsonArray paramsArr = obj["params"].to<JsonArray>();
for (const auto& ps : cap.params) {
JsonObject p = paramsArr.add<JsonObject>();
p["name"] = ps.name;
p["location"] = ps.location;
p["required"] = ps.required;
p["type"] = ps.type;
if (!ps.values.empty()) {
JsonArray allowed = p["values"].to<JsonArray>();
for (const auto& v : ps.values) {
allowed.add(v);
}
}
}
}
}
// Then any endpoints without explicit param specs
for (const auto& entry : serviceRegistry) {
const String& uri = std::get<0>(entry);
int method = std::get<1>(entry);
String key = makeKey(uri, method);
bool exists = false;
for (const auto& s : seen) { if (s == key) { exists = true; break; } }
if (!exists) {
JsonObject obj = endpointsArr.add<JsonObject>();
obj["uri"] = uri;
obj["method"] = methodStrFromInt(method);
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}

View File

@@ -2,8 +2,69 @@
// SSID and password are now configured via Config class
void NetworkManager::scanWifi() {
if (!isScanning) {
isScanning = true;
Serial.println("[WiFi] Starting WiFi scan...");
// Start async WiFi scan
WiFi.scanNetworksAsync([this](int networksFound) {
Serial.printf("[WiFi] Scan completed, found %d networks\n", networksFound);
this->processAccessPoints();
this->isScanning = false;
}, true);
} else {
Serial.println("[WiFi] Scan already in progress...");
}
}
void NetworkManager::processAccessPoints() {
int numNetworks = WiFi.scanComplete();
if (numNetworks <= 0) {
Serial.println("[WiFi] No networks found or scan not complete");
return;
}
// Clear existing access points
accessPoints.clear();
// Process each network found
for (int i = 0; i < numNetworks; i++) {
AccessPoint ap;
ap.ssid = WiFi.SSID(i);
ap.rssi = WiFi.RSSI(i);
ap.encryptionType = WiFi.encryptionType(i);
ap.channel = WiFi.channel(i);
ap.isHidden = ap.ssid.length() == 0;
// Copy BSSID
uint8_t* newBssid = new uint8_t[6];
memcpy(newBssid, WiFi.BSSID(i), 6);
ap.bssid = newBssid;
accessPoints.push_back(ap);
Serial.printf("[WiFi] Found network %d: %s, Ch: %d, RSSI: %d\n",
i + 1, ap.ssid.c_str(), ap.channel, ap.rssi);
}
// Free the memory used by the scan
WiFi.scanDelete();
}
std::vector<AccessPoint> NetworkManager::getAccessPoints() const {
return accessPoints;
}
NetworkManager::NetworkManager(NodeContext& ctx) : ctx(ctx) {}
void NetworkManager::setWiFiConfig(const String& ssid, const String& password,
uint32_t connect_timeout_ms, uint32_t retry_delay_ms) {
ctx.config.wifi_ssid = ssid;
ctx.config.wifi_password = password;
ctx.config.wifi_connect_timeout_ms = connect_timeout_ms;
ctx.config.wifi_retry_delay_ms = retry_delay_ms;
}
void NetworkManager::setHostnameFromMac() {
uint8_t mac[6];
WiFi.macAddress(mac);

View File

@@ -0,0 +1,42 @@
#include "services/ClusterService.h"
#include "ApiServer.h"
ClusterService::ClusterService(NodeContext& ctx) : ctx(ctx) {}
void ClusterService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/cluster/members", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleMembersRequest(request); },
std::vector<ParamSpec>{});
}
void ClusterService::handleMembersRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
JsonArray arr = doc["members"].to<JsonArray>();
for (const auto& pair : *ctx.memberList) {
const NodeInfo& node = pair.second;
JsonObject obj = arr.add<JsonObject>();
obj["hostname"] = node.hostname;
obj["ip"] = node.ip.toString();
obj["lastSeen"] = node.lastSeen;
obj["latency"] = node.latency;
obj["status"] = statusToStr(node.status);
obj["resources"]["freeHeap"] = node.resources.freeHeap;
obj["resources"]["chipId"] = node.resources.chipId;
obj["resources"]["sdkVersion"] = node.resources.sdkVersion;
obj["resources"]["cpuFreqMHz"] = node.resources.cpuFreqMHz;
obj["resources"]["flashChipSize"] = node.resources.flashChipSize;
// Add labels if present
if (!node.labels.empty()) {
JsonObject labelsObj = obj["labels"].to<JsonObject>();
for (const auto& kv : node.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}

View File

@@ -0,0 +1,132 @@
#include "services/NetworkService.h"
#include <ArduinoJson.h>
NetworkService::NetworkService(NetworkManager& networkManager)
: networkManager(networkManager) {}
void NetworkService::registerEndpoints(ApiServer& api) {
// WiFi scanning endpoints
api.addEndpoint("/api/network/wifi/scan", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleWifiScanRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/network/wifi/scan", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleGetWifiNetworks(request); },
std::vector<ParamSpec>{});
// Network status and configuration endpoints
api.addEndpoint("/api/network/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleNetworkStatus(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/network/wifi/config", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleSetWifiConfig(request); },
std::vector<ParamSpec>{
ParamSpec{String("ssid"), true, String("body"), String("string"), {}, String("")},
ParamSpec{String("password"), true, String("body"), String("string"), {}, String("")},
ParamSpec{String("connect_timeout_ms"), false, String("body"), String("number"), {}, String("10000")},
ParamSpec{String("retry_delay_ms"), false, String("body"), String("number"), {}, String("500")}
});
}
void NetworkService::handleWifiScanRequest(AsyncWebServerRequest* request) {
networkManager.scanWifi();
JsonDocument doc;
doc["status"] = "scanning";
doc["message"] = "WiFi scan started";
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NetworkService::handleGetWifiNetworks(AsyncWebServerRequest* request) {
auto accessPoints = networkManager.getAccessPoints();
JsonDocument doc;
doc["access_points"].to<JsonArray>();
for (const auto& ap : accessPoints) {
JsonObject apObj = doc["access_points"].add<JsonObject>();
apObj["ssid"] = ap.ssid;
apObj["rssi"] = ap.rssi;
apObj["channel"] = ap.channel;
apObj["encryption_type"] = ap.encryptionType;
apObj["hidden"] = ap.isHidden;
// Convert BSSID to string
char bssid[18];
sprintf(bssid, "%02X:%02X:%02X:%02X:%02X:%02X",
ap.bssid[0], ap.bssid[1], ap.bssid[2],
ap.bssid[3], ap.bssid[4], ap.bssid[5]);
apObj["bssid"] = bssid;
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NetworkService::handleNetworkStatus(AsyncWebServerRequest* request) {
JsonDocument doc;
// WiFi status
doc["wifi"]["connected"] = networkManager.isConnected();
doc["wifi"]["mode"] = networkManager.getMode() == WIFI_AP ? "AP" : "STA";
doc["wifi"]["ssid"] = networkManager.getSSID();
doc["wifi"]["ip"] = networkManager.getLocalIP().toString();
doc["wifi"]["mac"] = networkManager.getMacAddress();
doc["wifi"]["hostname"] = networkManager.getHostname();
doc["wifi"]["rssi"] = networkManager.getRSSI();
// If in AP mode, add AP specific info
if (networkManager.getMode() == WIFI_AP) {
doc["wifi"]["ap_ip"] = networkManager.getAPIP().toString();
doc["wifi"]["ap_mac"] = networkManager.getAPMacAddress();
doc["wifi"]["stations_connected"] = networkManager.getConnectedStations();
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NetworkService::handleSetWifiConfig(AsyncWebServerRequest* request) {
if (!request->hasParam("ssid", true) || !request->hasParam("password", true)) {
request->send(400, "application/json", "{\"error\": \"Missing required parameters\"}");
return;
}
String ssid = request->getParam("ssid", true)->value();
String password = request->getParam("password", true)->value();
// Optional parameters with defaults
uint32_t connect_timeout_ms = 10000; // Default 10 seconds
uint32_t retry_delay_ms = 500; // Default 500ms
if (request->hasParam("connect_timeout_ms", true)) {
connect_timeout_ms = request->getParam("connect_timeout_ms", true)->value().toInt();
}
if (request->hasParam("retry_delay_ms", true)) {
retry_delay_ms = request->getParam("retry_delay_ms", true)->value().toInt();
}
// Update configuration
networkManager.setWiFiConfig(ssid, password, connect_timeout_ms, retry_delay_ms);
// Attempt to connect with new settings
networkManager.setupWiFi();
JsonDocument doc;
doc["status"] = "success";
doc["message"] = "WiFi configuration updated";
doc["connected"] = WiFi.isConnected();
if (WiFi.isConnected()) {
doc["ip"] = WiFi.localIP().toString();
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}

View File

@@ -0,0 +1,157 @@
#include "services/NodeService.h"
#include "ApiServer.h"
NodeService::NodeService(NodeContext& ctx) : ctx(ctx) {}
void NodeService::registerEndpoints(ApiServer& api) {
// Status endpoint
api.addEndpoint("/api/node/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
// Update endpoint with file upload
api.addEndpoint("/api/node/update", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleUpdateRequest(request); },
[this](AsyncWebServerRequest* request, const String& filename, size_t index, uint8_t* data, size_t len, bool final) {
handleUpdateUpload(request, filename, index, data, len, final);
},
std::vector<ParamSpec>{
ParamSpec{String("firmware"), true, String("body"), String("file"), {}, String("")}
});
// Restart endpoint
api.addEndpoint("/api/node/restart", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleRestartRequest(request); },
std::vector<ParamSpec>{});
// Capabilities endpoint
api.addEndpoint("/api/node/capabilities", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleCapabilitiesRequest(request); },
std::vector<ParamSpec>{});
}
void NodeService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
doc["freeHeap"] = ESP.getFreeHeap();
doc["chipId"] = ESP.getChipId();
doc["sdkVersion"] = ESP.getSdkVersion();
doc["cpuFreqMHz"] = ESP.getCpuFreqMHz();
doc["flashChipSize"] = ESP.getFlashChipSize();
// Include local node labels if present
if (ctx.memberList) {
auto it = ctx.memberList->find(ctx.hostname);
if (it != ctx.memberList->end()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>();
for (const auto& kv : it->second.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
} else if (!ctx.self.labels.empty()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>();
for (const auto& kv : ctx.self.labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NodeService::handleUpdateRequest(AsyncWebServerRequest* request) {
bool success = !Update.hasError();
AsyncWebServerResponse* response = request->beginResponse(200, "application/json",
success ? "{\"status\": \"OK\"}" : "{\"status\": \"FAIL\"}");
response->addHeader("Connection", "close");
request->send(response);
request->onDisconnect([]() {
Serial.println("[API] Restart device");
delay(10);
ESP.restart();
});
}
void NodeService::handleUpdateUpload(AsyncWebServerRequest* request, const String& filename,
size_t index, uint8_t* data, size_t len, bool final) {
if (!index) {
Serial.print("[OTA] Update Start ");
Serial.println(filename);
Update.runAsync(true);
if(!Update.begin(request->contentLength(), U_FLASH)) {
Serial.println("[OTA] Update failed: not enough space");
Update.printError(Serial);
AsyncWebServerResponse* response = request->beginResponse(500, "application/json",
"{\"status\": \"FAIL\"}");
response->addHeader("Connection", "close");
request->send(response);
return;
}
}
if (!Update.hasError()) {
if (Update.write(data, len) != len) {
Update.printError(Serial);
}
}
if (final) {
if (Update.end(true)) {
if(Update.isFinished()) {
Serial.print("[OTA] Update Success with ");
Serial.print(index + len);
Serial.println("B");
} else {
Serial.println("[OTA] Update not finished");
}
} else {
Serial.print("[OTA] Update failed: ");
Update.printError(Serial);
}
}
}
void NodeService::handleRestartRequest(AsyncWebServerRequest* request) {
AsyncWebServerResponse* response = request->beginResponse(200, "application/json",
"{\"status\": \"restarting\"}");
response->addHeader("Connection", "close");
request->send(response);
request->onDisconnect([]() {
Serial.println("[API] Restart device");
delay(10);
ESP.restart();
});
}
void NodeService::handleCapabilitiesRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
JsonArray endpointsArr = doc["endpoints"].to<JsonArray>();
// Add all registered capabilities
for (const auto& cap : ctx.capabilities) {
JsonObject obj = endpointsArr.add<JsonObject>();
obj["uri"] = cap.uri;
obj["method"] = ApiServer::methodToStr(cap.method);
if (!cap.params.empty()) {
JsonArray paramsArr = obj["params"].to<JsonArray>();
for (const auto& ps : cap.params) {
JsonObject p = paramsArr.add<JsonObject>();
p["name"] = ps.name;
p["location"] = ps.location;
p["required"] = ps.required;
p["type"] = ps.type;
if (!ps.values.empty()) {
JsonArray allowed = p["values"].to<JsonArray>();
for (const auto& v : ps.values) {
allowed.add(v);
}
}
if (ps.defaultValue.length() > 0) {
p["default"] = ps.defaultValue;
}
}
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}

View File

@@ -0,0 +1,137 @@
#include "services/TaskService.h"
#include "ApiServer.h"
#include <algorithm>
TaskService::TaskService(TaskManager& taskManager) : taskManager(taskManager) {}
void TaskService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/tasks/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/tasks/control", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{
String("task"),
true,
String("body"),
String("string"),
{},
String("")
},
ParamSpec{
String("action"),
true,
String("body"),
String("string"),
{String("enable"), String("disable"), String("start"), String("stop"), String("status")},
String("")
}
});
}
void TaskService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument scratch;
auto taskStatuses = taskManager.getAllTaskStatuses(scratch);
JsonDocument doc;
JsonObject summaryObj = doc["summary"].to<JsonObject>();
summaryObj["totalTasks"] = taskStatuses.size();
summaryObj["activeTasks"] = std::count_if(taskStatuses.begin(), taskStatuses.end(),
[](const auto& pair) { return pair.second["enabled"]; });
JsonArray tasksArr = doc["tasks"].to<JsonArray>();
for (const auto& taskPair : taskStatuses) {
JsonObject taskObj = tasksArr.add<JsonObject>();
taskObj["name"] = taskPair.first;
taskObj["interval"] = taskPair.second["interval"];
taskObj["enabled"] = taskPair.second["enabled"];
taskObj["running"] = taskPair.second["running"];
taskObj["autoStart"] = taskPair.second["autoStart"];
}
JsonObject systemObj = doc["system"].to<JsonObject>();
systemObj["freeHeap"] = ESP.getFreeHeap();
systemObj["uptime"] = millis();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void TaskService::handleControlRequest(AsyncWebServerRequest* request) {
if (request->hasParam("task", true) && request->hasParam("action", true)) {
String taskName = request->getParam("task", true)->value();
String action = request->getParam("action", true)->value();
bool success = false;
String message = "";
if (action == "enable") {
taskManager.enableTask(taskName.c_str());
success = true;
message = "Task enabled";
} else if (action == "disable") {
taskManager.disableTask(taskName.c_str());
success = true;
message = "Task disabled";
} else if (action == "start") {
taskManager.startTask(taskName.c_str());
success = true;
message = "Task started";
} else if (action == "stop") {
taskManager.stopTask(taskName.c_str());
success = true;
message = "Task stopped";
} else if (action == "status") {
success = true;
message = "Task status retrieved";
JsonDocument statusDoc;
statusDoc["success"] = success;
statusDoc["message"] = message;
statusDoc["task"] = taskName;
statusDoc["action"] = action;
statusDoc["taskDetails"] = JsonObject();
JsonObject taskDetails = statusDoc["taskDetails"];
taskDetails["name"] = taskName;
taskDetails["enabled"] = taskManager.isTaskEnabled(taskName.c_str());
taskDetails["running"] = taskManager.isTaskRunning(taskName.c_str());
taskDetails["interval"] = taskManager.getTaskInterval(taskName.c_str());
taskDetails["system"] = JsonObject();
JsonObject systemInfo = taskDetails["system"];
systemInfo["freeHeap"] = ESP.getFreeHeap();
systemInfo["uptime"] = millis();
String statusJson;
serializeJson(statusDoc, statusJson);
request->send(200, "application/json", statusJson);
return;
} else {
success = false;
message = "Invalid action. Use: enable, disable, start, stop, or status";
}
JsonDocument doc;
doc["success"] = success;
doc["message"] = message;
doc["task"] = taskName;
doc["action"] = action;
String json;
serializeJson(doc, json);
request->send(success ? 200 : 400, "application/json", json);
} else {
JsonDocument doc;
doc["success"] = false;
doc["message"] = "Missing parameters. Required: task, action";
doc["example"] = "{\"task\": \"discovery_send\", \"action\": \"status\"}";
String json;
serializeJson(doc, json);
request->send(400, "application/json", json);
}
}