Compare commits

..

47 Commits

Author SHA1 Message Date
025ac7b810 fix: endpoints result 2025-09-23 21:29:18 +02:00
a9f56c1279 fix: tasks endpoint response 2025-09-23 21:03:13 +02:00
594b5e3af6 feat: implement complete JSON serialization system with response classes
- Add abstract JsonSerializable base class with toJson/fromJson methods
- Create comprehensive response classes for complete JSON document handling:
  * ClusterMembersResponse for cluster member data
  * TaskStatusResponse and TaskControlResponse for task operations
  * NodeStatusResponse, NodeEndpointsResponse, NodeOperationResponse for node data
- Implement concrete serializable classes for all data types:
  * NodeInfoSerializable, TaskInfoSerializable, SystemInfoSerializable
  * TaskSummarySerializable, EndpointInfoSerializable
- Refactor all service classes to use new serialization system
- Reduce service method complexity from 20-30 lines to 2-3 lines
- Eliminate manual JsonDocument creation and field mapping
- Ensure type safety and compile-time validation
- Maintain backward compatibility while improving maintainability

Breaking change: Service classes now use response objects instead of manual JSON creation
2025-09-22 21:55:25 +02:00
c11652c123 feat: optimize neopattern example 2025-09-20 22:05:52 +02:00
51d4d4bc94 feat: remove hostname from labels 2025-09-20 15:04:11 +02:00
e95eb09a11 feat: introduce new param type numberRange 2025-09-19 21:49:59 +02:00
4727405be1 feat: rewrite NeoPattern example 2025-09-19 21:02:26 +02:00
93f09c3bb4 feat: unified monitoring service 2025-09-16 20:09:48 +02:00
83d87159fc Merge pull request 'feature/relay-example-ui' (#6) from feature/relay-example-ui into main
Reviewed-on: #6
2025-09-16 18:14:58 +02:00
f7f5918509 fix: builds 2025-09-16 18:14:41 +02:00
95a7e3167e fix: revert low mem treshold 2025-09-16 17:06:14 +02:00
702eec5a13 feat: releay ui example, simplify logging 2025-09-16 15:32:49 +02:00
2d85f560bb feat: serve static files, relay example 2025-09-16 12:12:27 +02:00
0b63efece0 Merge pull request 'feat: logging service' (#5) from feature/logging into main
Reviewed-on: #5
2025-09-16 10:11:27 +02:00
8a2988cb50 feat: logging service 2025-09-16 10:10:23 +02:00
6a30dc0dc1 Merge pull request 'feature/web' (#4) from feature/web into main
Reviewed-on: #4
2025-09-16 08:29:04 +02:00
5229848600 chore: cleanup 2025-09-16 08:28:28 +02:00
adde7a3676 docs: add FS and FileService info 2025-09-16 08:27:05 +02:00
dd0c7cca78 fix: ldscript in all envs 2025-09-16 08:20:45 +02:00
d160630f1d fix: partition layout 2025-09-16 08:10:22 +02:00
98fdc3e1ae WIP: service and broken partitions 2025-09-15 20:33:15 +02:00
089f938796 Merge pull request 'feat: implement Spore framework class as main orchestration layer' (#3) from feature/spore into main
Reviewed-on: #3
2025-09-14 12:24:24 +02:00
4d808938ee fix: update remaining build filters for NeoPixel and NeoPattern environments
- Update build_src_filter for esp01_1m_neopixel, d1_mini_neopixel environments
- Update build_src_filter for esp01_1m_neopattern, d1_mini_neopattern environments
- All environments now compile successfully with new folder structure
2025-09-13 21:42:46 +02:00
554c6ff38d refactor: reorganize project structure with modern C++ namespace organization
- Restructure include/ and src/ directories with logical grouping
- Move core components to spore/core/ (NodeContext, NetworkManager, TaskManager, ClusterManager, ApiServer)
- Move services to spore/services/ (NodeService, NetworkService, ClusterService, TaskService)
- Move types to spore/types/ (NodeInfo, ApiTypes, Config)
- Move internal components to spore/internal/ (Globals)
- Update all #include statements to use new namespace paths
- Update platformio.ini build filters for all environments
- Update all example files to use new include paths
- Maintain backward compatibility for public API
- Improve code organization, maintainability, and scalability

This reorganization follows modern C++ project structure patterns and provides
clear separation between public API, internal implementation, and utilities.
All examples compile successfully with the new structure.
2025-09-13 21:30:07 +02:00
bf17684dc6 feat: implement Spore framework class as main orchestration layer
- Add Spore class as unified interface for all core framework functionality
- Implement setup() and begin() methods for flexible initialization pattern
- Add service registration with addService() for both raw and smart pointers
- Provide accessor methods for core components (getTaskManager, getContext, etc.)
- Automatically include core services (Node, Network, Cluster, Task)
- Update all examples to use simplified Spore framework approach
- Fix circular dependency issues in include structure
- Remove setHostname and setApiPort configuration methods
- Add comprehensive documentation and usage examples

The Spore class encapsulates all core functionality from the base example
and provides a clean, unified API for the entire framework. Examples now
use just spore.setup() -> add services -> spore.begin() -> spore.loop().
2025-09-13 21:17:54 +02:00
72b559e047 refactor: simplify endpoint and capabilities 2025-09-13 19:15:07 +02:00
12caeb0be6 feat: services (#2) 2025-09-13 13:45:24 +02:00
fe045804cb feat: set labels in NodeContext/Info 2025-08-29 20:21:11 +02:00
d3a9802ec9 feat: add labels to NodeInfo 2025-08-29 13:30:08 +02:00
f8e5a9c66f feat: add NeoPixel example 2025-08-28 21:21:04 +02:00
4b63d1011f feat: improve task handling, refactoring 2025-08-28 20:46:27 +02:00
d7e98a41fa feature/capabilities (#1)
Reviewed-on: #1
2025-08-28 11:17:24 +02:00
a9fb4252da fix: change relay example init 2025-08-28 09:54:42 +02:00
a085b3b8ee feat: create examples and corresponding build config 2025-08-28 09:18:11 +02:00
f94d201b88 fix: calc latency when fetching node infos 2025-08-24 20:41:33 +02:00
c8d21a12ad feat: use lambdas again for task registration 2025-08-22 16:16:07 +02:00
07032b56ca docs: remove wrong env vars 2025-08-22 16:11:37 +02:00
5d6a7cf468 docs: fix wrong documentation 2025-08-22 16:10:59 +02:00
f48ddcf9f7 chore: move header files to includes folder 2025-08-22 16:06:05 +02:00
17bdfeaaf0 docs: update README.md 2025-08-22 15:51:47 +02:00
30a5f8b8cb feat: task manager endpoint, updated documentation 2025-08-22 15:47:08 +02:00
d7d307e3ce feat: support D1 2025-08-22 13:13:49 +02:00
c0efba8667 feat: register tasks outside of main 2025-08-22 07:30:47 +02:00
5ccd3ec956 docs: update task manager 2025-08-21 22:34:06 +02:00
0d51816bd3 feat: bind tasks instead of passing fn ptrs when registering a task 2025-08-21 22:24:46 +02:00
f80b594d21 feat: task manager 2025-08-21 21:52:25 +02:00
953768b681 docs: update 2025-08-21 21:40:38 +02:00
85 changed files with 9704 additions and 722 deletions

View File

@@ -0,0 +1,56 @@
---
description: Guidelines for writing clean, maintainable, and human-readable code. Apply these rules when writing or reviewing code to ensure consistency and quality.
globs:
alwaysApply: true
---
# Clean Code Guidelines
## Constants Over Magic Numbers
- Replace hard-coded values with named constants
- Use descriptive constant names that explain the value's purpose
- Keep constants at the top of the file or in a dedicated constants file
## Meaningful Names
- Variables, functions, and classes should reveal their purpose
- Names should explain why something exists and how it's used
- Avoid abbreviations unless they're universally understood
## Smart Comments
- Don't comment on what the code does - make the code self-documenting
- Use comments to explain why something is done a certain way
- Document APIs, complex algorithms, and non-obvious side effects
## Single Responsibility
- Each function should do exactly one thing
- Functions should be small and focused
- If a function needs a comment to explain what it does, it should be split
## DRY (Don't Repeat Yourself)
- Extract repeated code into reusable functions
- Share common logic through proper abstraction
- Maintain single sources of truth
## Clean Structure
- Keep related code together
- Organize code in a logical hierarchy
- Use consistent file and folder naming conventions
## Encapsulation
- Hide implementation details
- Expose clear interfaces
- Move nested conditionals into well-named functions
## Code Quality Maintenance
- Refactor continuously
- Fix technical debt early
- Leave code cleaner than you found it
## Testing
- Write tests before fixing bugs
- Keep tests readable and maintainable
- Test edge cases and error conditions
## Version Control
- Write clear commit messages
- Make small, focused commits
- Use meaningful branch names

68
.cursor/rules/cpp.mdc Normal file
View File

@@ -0,0 +1,68 @@
---
description: C++ Development Rules
globs:
alwaysApply: true
---
# C++ Development Rules
You are a senior C++ developer with expertise in modern C++ (C++17/20), STL, and system-level programming.
## Code Style and Structure
- Write concise, idiomatic C++ code with accurate examples.
- Follow modern C++ conventions and best practices.
- Use object-oriented, procedural, or functional programming patterns as appropriate.
- Leverage STL and standard algorithms for collection operations.
- Use descriptive variable and method names (e.g., 'isUserSignedIn', 'calculateTotal').
- Structure files into headers (*.hpp) and implementation files (*.cpp) with logical separation of concerns.
## Naming Conventions
- Use PascalCase for class names.
- Use camelCase for variable names and methods.
- Use SCREAMING_SNAKE_CASE for constants and macros.
- Prefix member variables with an underscore or m_ (e.g., `_userId`, `m_userId`).
- Use namespaces to organize code logically.
## C++ Features Usage
- Prefer modern C++ features (e.g., auto, range-based loops, smart pointers).
- Use `std::unique_ptr` and `std::shared_ptr` for memory management.
- Prefer `std::optional`, `std::variant`, and `std::any` for type-safe alternatives.
- Use `constexpr` and `const` to optimize compile-time computations.
- Use `std::string_view` for read-only string operations to avoid unnecessary copies.
## Syntax and Formatting
- Follow a consistent coding style, such as Google C++ Style Guide or your teams standards.
- Place braces on the same line for control structures and methods.
- Use clear and consistent commenting practices.
## Error Handling and Validation
- Use exceptions for error handling (e.g., `std::runtime_error`, `std::invalid_argument`).
- Use RAII for resource management to avoid memory leaks.
- Validate inputs at function boundaries.
- Log errors using a logging library (e.g., spdlog, Boost.Log).
## Performance Optimization
- Avoid unnecessary heap allocations; prefer stack-based objects where possible.
- Use `std::move` to enable move semantics and avoid copies.
- Optimize loops with algorithms from `<algorithm>` (e.g., `std::sort`, `std::for_each`).
- Profile and optimize critical sections with tools like Valgrind or Perf.
## Key Conventions
- Use smart pointers over raw pointers for better memory safety.
- Avoid global variables; use singletons sparingly.
- Use `enum class` for strongly typed enumerations.
- Separate interface from implementation in classes.
- Use templates and metaprogramming judiciously for generic solutions.
## Security
- Use secure coding practices to avoid vulnerabilities (e.g., buffer overflows, dangling pointers).
- Prefer `std::array` or `std::vector` over raw arrays.
- Avoid C-style casts; use `static_cast`, `dynamic_cast`, or `reinterpret_cast` when necessary.
- Enforce const-correctness in functions and member variables.
## Documentation
- Write clear comments for classes, methods, and critical logic.
- Use Doxygen for generating API documentation.
- Document assumptions, constraints, and expected behavior of code.
Follow the official ISO C++ standards and guidelines for best practices in modern C++ development.

111
.cursor/rules/gitflow.mdc Normal file
View File

@@ -0,0 +1,111 @@
---
description: Gitflow Workflow Rules. These rules should be applied when performing git operations.
---
# Gitflow Workflow Rules
## Main Branches
### main (or master)
- Contains production-ready code
- Never commit directly to main
- Only accepts merges from:
- hotfix/* branches
- release/* branches
- Must be tagged with version number after each merge
### develop
- Main development branch
- Contains latest delivered development changes
- Source branch for feature branches
- Never commit directly to develop
## Supporting Branches
### feature/*
- Branch from: develop
- Merge back into: develop
- Naming convention: feature/[issue-id]-descriptive-name
- Example: feature/123-user-authentication
- Must be up-to-date with develop before creating PR
- Delete after merge
### release/*
- Branch from: develop
- Merge back into:
- main
- develop
- Naming convention: release/vX.Y.Z
- Example: release/v1.2.0
- Only bug fixes, documentation, and release-oriented tasks
- No new features
- Delete after merge
### hotfix/*
- Branch from: main
- Merge back into:
- main
- develop
- Naming convention: hotfix/vX.Y.Z
- Example: hotfix/v1.2.1
- Only for urgent production fixes
- Delete after merge
## Commit Messages
- Format: `type(scope): description`
- Types:
- feat: New feature
- fix: Bug fix
- docs: Documentation changes
- style: Formatting, missing semicolons, etc.
- refactor: Code refactoring
- test: Adding tests
- chore: Maintenance tasks
## Version Control
### Semantic Versioning
- MAJOR version for incompatible API changes
- MINOR version for backwards-compatible functionality
- PATCH version for backwards-compatible bug fixes
## Pull Request Rules
1. All changes must go through Pull Requests
2. Required approvals: minimum 1
3. CI checks must pass
4. No direct commits to protected branches (main, develop)
5. Branch must be up to date before merging
6. Delete branch after merge
## Branch Protection Rules
### main & develop
- Require pull request reviews
- Require status checks to pass
- Require branches to be up to date
- Include administrators in restrictions
- No force pushes
- No deletions
## Release Process
1. Create release branch from develop
2. Bump version numbers
3. Fix any release-specific issues
4. Create PR to main
5. After merge to main:
- Tag release
- Merge back to develop
- Delete release branch
## Hotfix Process
1. Create hotfix branch from main
2. Fix the issue
3. Bump patch version
4. Create PR to main
5. After merge to main:
- Tag release
- Merge back to develop
- Delete hotfix branch

2
.env
View File

@@ -1 +1 @@
export API_NODE=10.0.1.53
export API_NODE=10.0.1.60

290
README.md
View File

@@ -2,228 +2,184 @@
> **S**Procket **OR**chestration **E**ngine
SPORE is a basic cluster orchestration engine for ESP8266 microcontrollers that provides automatic node discovery, health monitoring, and over-the-air updates in a distributed network environment.
SPORE is a cluster engine for ESP8266 microcontrollers that provides automatic node discovery, health monitoring, and over-the-air updates in a distributed network environment.
## Table of Contents
- [Features](#features)
- [Supported Hardware](#supported-hardware)
- [Architecture](#architecture)
- [API Reference](#api-reference)
- [Configuration](#configuration)
- [Development](#development)
- [Current Limitations](#current-limitations)
- [Troubleshooting](#troubleshooting)
- [Documentation](#documentation)
- [Contributing](#contributing)
- [License](#license)
- [Acknowledgments](#acknowledgments)
## Features
- **WiFi Management**: Automatic WiFi STA/AP configuration with hostname generation
- **WiFi Management**: Automatic WiFi STA/AP configuration with MAC-based hostname generation
- **Auto Discovery**: UDP-based node discovery with automatic cluster membership
- **Service Registry**: Dynamic API endpoint discovery and registration
- **Health Monitoring**: Real-time node status tracking with resource monitoring
- **Event System**: Local and cluster-wide event publishing/subscription
- **Over-The-Air Updates**: Seamless firmware updates across the cluster
- **RESTful API**: HTTP-based cluster management and monitoring
- **REST API**: HTTP-based cluster management and monitoring
- **Capability Discovery**: Automatic API endpoint and service capability detection
## Supported Hardware
- **ESP-01** (1MB Flash)
- **ESP-01S** (1MB Flash)
- **ESP-01 / ESP-01S** (1MB Flash)
- **Wemos D1** (4MB Flash)
- Other ESP8266 boards with 1MB+ flash
## Architecture
### Core Components
The system architecture consists of several key components working together:
SPORE uses a modular architecture with automatic node discovery, health monitoring, and distributed task management.
**Core Components:**
- **Spore Framework**: Main framework class that orchestrates all components
- **Network Manager**: WiFi connection handling and hostname configuration
- **Cluster Manager**: Node discovery, member list management, and health monitoring
- **API Server**: HTTP API server with dynamic endpoint registration
- **Task Scheduler**: Cooperative multitasking system for background operations
- **Node Context**: Central context providing event system and shared resources
### Auto Discovery Protocol
**Key Features:**
- **Auto Discovery**: UDP-based node detection on port 4210
- **Health Monitoring**: Continuous status checking via HTTP API
- **Task Scheduling**: Background tasks at configurable intervals
- **Event System**: Local and cluster-wide event publishing/subscription
- **Status Tracking**: Automatic node categorization (ACTIVE, INACTIVE, DEAD)
- **Resource Monitoring**: Memory, CPU, flash, and API endpoint tracking
- **WiFi Fallback**: Automatic access point creation if connection fails
The cluster uses a UDP-based discovery protocol for automatic node detection:
📖 **Detailed Architecture:** See [`docs/Architecture.md`](./docs/Architecture.md) for comprehensive system design and implementation details.
1. **Discovery Broadcast**: Nodes periodically send UDP packets on port 4210
2. **Response Handling**: Nodes respond with their hostname and IP address
3. **Member Management**: Discovered nodes are automatically added to the cluster
4. **Health Monitoring**: Continuous status checking via HTTP API calls
## Quick Start
### Task Scheduling
The Spore framework provides a simple, unified interface for all core functionality:
The system runs several background tasks at different intervals:
```cpp
#include <Arduino.h>
#include "Spore.h"
- **Discovery Tasks**: Send/listen for discovery packets (1s/100ms)
- **Status Updates**: Monitor cluster member health (1s)
- **Heartbeat**: Maintain cluster connectivity (2s)
- **Member Info**: Update detailed node information (10s)
- **Debug Output**: Print cluster status (5s)
// Create Spore instance with custom labels
Spore spore({
{"app", "my_app"},
{"role", "controller"}
});
## API Endpoints
void setup() {
spore.setup();
spore.begin();
}
### Node Management
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/node/status` | GET | Get system resources and API endpoints |
| `/api/node/update` | POST | Upload and install firmware update |
| `/api/node/restart` | POST | Restart the node |
### Cluster Management
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/cluster/members` | GET | Get cluster membership and status |
### Node Status Response
```json
{
"freeHeap": 12345,
"chipId": 12345678,
"sdkVersion": "2.2.2-dev(38a443e)",
"cpuFreqMHz": 80,
"flashChipSize": 1048576,
"api": [
{
"uri": "/api/node/status",
"method": "GET"
}
]
void loop() {
spore.loop();
}
```
### Cluster Members Response
```json
{
"members": [
{
"hostname": "esp_123456",
"ip": "192.168.1.100",
"lastSeen": 1234567890,
"latency": 5,
"status": "ACTIVE",
"resources": {
"freeHeap": 12345,
"chipId": 12345678,
"sdkVersion": "2.2.2-dev(38a443e)",
"cpuFreqMHz": 80,
"flashChipSize": 1048576
},
"api": [
{
"uri": "/api/node/status",
"method": "GET"
}
]
}
]
**Adding Custom Services:**
```cpp
void setup() {
spore.setup();
// Create and register custom services
RelayService* relayService = new RelayService(spore.getTaskManager(), 2);
spore.addService(relayService);
// Or using smart pointers
auto sensorService = std::make_shared<SensorService>();
spore.addService(sensorService);
// Start the API server and complete initialization
spore.begin();
}
```
**Examples:** See [`examples/base/`](./examples/base/) for basic usage and [`examples/relay/`](./examples/relay/) for custom service integration.
## API Reference
The system provides a comprehensive RESTful API for monitoring and controlling the embedded device. All endpoints return JSON responses and support standard HTTP status codes.
**Core Endpoints:**
| Endpoint | Method | Description |
|----------|--------|-------------|
| `/api/node/status` | GET | System resources and API endpoint registry |
| `/api/node/endpoints` | GET | API endpoints and parameters |
| `/api/cluster/members` | GET | Cluster membership and health status |
| `/api/node/update` | POST | OTA firmware updates |
| `/api/node/restart` | POST | System restart |
| `/api/tasks/status` | GET | Task management and monitoring |
| `/api/tasks/control` | POST | Task control operations |
| `/api/network/status` | GET | WiFi and network status information |
| `/api/network/wifi/scan` | GET/POST | WiFi network scanning and discovery |
| `/api/network/wifi/config` | POST | WiFi configuration management |
**Response Format:** All endpoints return JSON with standardized error handling and HTTP status codes.
📖 **Complete API Documentation:** See [`docs/API.md`](./docs/API.md) for detailed endpoint documentation, examples, and integration guides.
🔧 **OpenAPI Specification:** Machine-readable API spec available in [`api/`](./api/) folder for code generation and tooling integration.
## Configuration
### Environment Setup
Create a `.env` file in your project root:
```bash
# API node IP for cluster management
export API_NODE=192.168.1.100
# WiFi credentials (optional, can be configured in code)
export WIFI_SSID=your_network
export WIFI_PASSWORD=your_password
```
### PlatformIO Configuration
The project uses PlatformIO with the following configuration:
The project uses PlatformIO with Arduino framework and supports multiple ESP8266 boards.
**Key Settings:**
- **Framework**: Arduino
- **Board**: ESP-01 with 1MB flash
- **Board**: ESP-01 with 1MB flash (default)
- **Upload Speed**: 115200 baud
- **Flash Mode**: DOUT (required for ESP-01S)
**Dependencies:**
- ESPAsyncWebServer, ArduinoJson, TaskScheduler
- ESP8266WiFi and HTTPClient libraries
**Environment Setup:** Create `.env` file for cluster configuration and API node settings.
## Development
### Prerequisites
- PlatformIO Core or PlatformIO IDE
- ESP8266 development tools
- `jq` for JSON processing in scripts
### Building
Build the firmware:
**Quick Commands:**
```bash
./ctl.sh build
```
# Build firmware
./ctl.sh build target esp01_1m
### Flashing
# Flash device
./ctl.sh flash target esp01_1m
Flash firmware to a connected device:
# OTA update
./ctl.sh ota update 192.168.1.100 esp01_1m
```bash
./ctl.sh flash
```
### Over-The-Air Updates
Update a specific node:
```bash
./ctl.sh ota update 192.168.1.100
```
Update all nodes in the cluster:
```bash
./ctl.sh ota all
```
### Cluster Management
View cluster members:
```bash
# Cluster management
./ctl.sh cluster members
```
## Implementation Details
**Prerequisites:** PlatformIO Core, ESP8266 tools, `jq` for JSON processing
### Event System
📖 **Complete Development Guide:** See [`docs/Development.md`](./docs/Development.md) for comprehensive build, deployment, and troubleshooting instructions.
The `NodeContext` provides an event-driven architecture:
## Current Limitations
```cpp
// Subscribe to events
ctx.on("node_discovered", [](void* data) {
NodeInfo* node = static_cast<NodeInfo*>(data);
// Handle new node discovery
});
// Publish events
ctx.fire("node_discovered", &newNode);
```
### Node Status Tracking
Nodes are automatically categorized by their activity:
- **ACTIVE**: Responding within 10 seconds
- **INACTIVE**: No response for 10-60 seconds
- **DEAD**: No response for over 60 seconds
### Resource Monitoring
Each node tracks:
- Free heap memory
- Chip ID and SDK version
- CPU frequency
- Flash chip size
- API endpoint registry
- WiFi credentials are hardcoded in `Config.cpp` (should be configurable)
- Limited error handling for network failures
- No persistent storage for configuration
- Task monitoring and system health metrics
- Task execution history and performance analytics not yet implemented
- No authentication or security features implemented
## Troubleshooting
### Common Issues
1. **Discovery Failures**: Check UDP port 4210 is not blocked
2. **WiFi Connection**: Verify SSID/password in NetworkManager
2. **WiFi Connection**: Verify SSID/password in Config.cpp
3. **OTA Updates**: Ensure sufficient flash space (1MB minimum)
4. **Cluster Split**: Check network connectivity between nodes
@@ -235,6 +191,16 @@ Enable serial monitoring to see cluster activity:
pio device monitor
```
## Documentation
📚 **Comprehensive documentation is available in the [`docs/`](./docs/) folder:**
- **[API Reference](./docs/API.md)** - Complete API documentation with examples
- **[Architecture Guide](./docs/Architecture.md)** - System design and implementation details
- **[Development Guide](./docs/Development.md)** - Build, deployment, and configuration
- **[Task Management Guide](./docs/TaskManagement.md)** - Background task management system
- **[OpenAPI Spec](./api/)** - Machine-readable API specification
## Contributing
1. Fork the repository

201
api/README.md Normal file
View File

@@ -0,0 +1,201 @@
# SPORE API Documentation
This folder contains the OpenAPI specification for the SPORE embedded system API.
## Files
- **`openapi.yaml`** - OpenAPI 3.0 specification file
- **`README.md`** - This documentation file
## OpenAPI Specification
The `openapi.yaml` file provides a complete, machine-readable specification of the SPORE API. It can be used with various tools to:
- Generate client libraries in multiple programming languages
- Create interactive API documentation
- Validate API requests and responses
- Generate mock servers for testing
- Integrate with API management platforms
## Using the OpenAPI Specification
### 1. View Interactive Documentation
#### Option A: Swagger UI Online
1. Go to [Swagger Editor](https://editor.swagger.io/)
2. Copy and paste the contents of `openapi.yaml`
3. View the interactive documentation
#### Option B: Local Swagger UI
```bash
# Install Swagger UI locally
npm install -g swagger-ui-express
# Or use Docker
docker run -p 8080:8080 -e SWAGGER_JSON=/openapi.yaml -v $(pwd):/swagger swaggerapi/swagger-ui
```
### 2. Generate Client Libraries
#### Using OpenAPI Generator
```bash
# Install OpenAPI Generator
npm install @openapitools/openapi-generator-cli -g
# Generate Python client
openapi-generator generate -i openapi.yaml -g python -o python-client
# Generate JavaScript client
openapi-generator generate -i openapi.yaml -g javascript -o js-client
# Generate C# client
openapi-generator generate -i openapi.yaml -g csharp -o csharp-client
```
#### Using Swagger Codegen
```bash
# Install Swagger Codegen
npm install -g swagger-codegen
# Generate Python client
swagger-codegen generate -i openapi.yaml -l python -o python-client
# Generate Java client
swagger-codegen generate -i openapi.yaml -l java -o java-client
```
### 3. Validate API Responses
#### Using OpenAPI Validator
```bash
# Install OpenAPI validator
npm install -g @apidevtools/swagger-parser
# Validate the specification
swagger-parser validate openapi.yaml
```
### 4. Generate Mock Server
#### Using Prism (Stoplight)
```bash
# Install Prism
npm install -g @stoplight/prism-cli
# Start mock server
prism mock openapi.yaml
# The mock server will be available at http://localhost:4010
```
## API Endpoints Overview
The SPORE API provides the following main categories of endpoints:
### Task Management
- **`GET /api/tasks/status`** - Get comprehensive task status
- **`POST /api/tasks/control`** - Control individual tasks
### System Status
- **`GET /api/node/status`** - Get system resource information
- **`GET /api/cluster/members`** - Get cluster membership
### System Management
- **`POST /api/node/update`** - Handle OTA firmware updates
- **`POST /api/node/restart`** - Trigger system restart
## Data Models
The OpenAPI specification includes comprehensive schemas for:
- **Task Information**: Task status, configuration, and execution details
- **System Resources**: Memory usage, chip information, and performance metrics
- **Cluster Management**: Node health, network topology, and resource sharing
- **API Responses**: Standardized response formats and error handling
## Examples
### Basic Task Status Check
```bash
curl -s http://192.168.1.100/api/tasks/status | jq '.'
```
### Task Control
```bash
# Disable a task
curl -X POST http://192.168.1.100/api/tasks/control \
-d "task=heartbeat&action=disable"
# Get detailed status
curl -X POST http://192.168.1.100/api/tasks/control \
-d "task=discovery_send&action=status"
```
### System Monitoring
```bash
# Check system resources
curl -s http://192.168.1.100/api/node/status | jq '.freeHeap'
# Monitor cluster health
curl -s http://192.168.1.100/api/cluster/members | jq '.members[].status'
```
## Integration Examples
### Python Client
```python
import requests
# Get task status
response = requests.get('http://192.168.1.100/api/tasks/status')
tasks = response.json()
# Check active tasks
active_count = tasks['summary']['activeTasks']
print(f"Active tasks: {active_count}")
# Control a task
control_data = {'task': 'heartbeat', 'action': 'disable'}
response = requests.post('http://192.168.1.100/api/tasks/control', data=control_data)
```
### JavaScript Client
```javascript
// Get task status
fetch('http://192.168.1.100/api/tasks/status')
.then(response => response.json())
.then(data => {
console.log(`Total tasks: ${data.summary.totalTasks}`);
console.log(`Active tasks: ${data.summary.activeTasks}`);
});
// Control a task
fetch('http://192.168.1.100/api/tasks/control', {
method: 'POST',
headers: {'Content-Type': 'application/x-www-form-urlencoded'},
body: 'task=heartbeat&action=disable'
});
```
## Contributing
When adding new API endpoints or modifying existing ones:
1. Update the `openapi.yaml` file
2. Add appropriate schemas for new data models
3. Include example responses
4. Update this README if needed
5. Test the specification with validation tools
## Tools and Resources
- [OpenAPI Specification](https://swagger.io/specification/)
- [OpenAPI Generator](https://openapi-generator.tech/)
- [Swagger Codegen](https://github.com/swagger-api/swagger-codegen)
- [Swagger UI](https://swagger.io/tools/swagger-ui/)
- [Prism Mock Server](https://stoplight.io/open-source/prism/)
- [OpenAPI Validator](https://apitools.dev/swagger-parser/)
## License
This API specification is part of the SPORE project and follows the same license terms.

1512
api/openapi.yaml Normal file

File diff suppressed because it is too large Load Diff

46
ctl.sh
View File

@@ -9,26 +9,54 @@ function info {
}
function build {
echo "Building project..."
pio run
function target {
echo "Building project for $1..."
pio run -e $1
}
function all {
pio run
}
${@:-all}
}
function flash {
echo "Flashing firmware..."
pio run --target upload
function target {
echo "Flashing firmware for $1..."
pio run --target upload -e $1
}
${@:-info}
}
function mkfs {
~/bin/mklittlefs -c data \
-s 0x9000 \
-b 4096 \
-p 256 \
littlefs.bin
}
function flashfs {
esptool.py --port /dev/ttyUSB0 \
--baud 115200 \
write_flash 0xbb000 littlefs.bin
}
function uploadfs {
echo "Uploading files to LittleFS..."
pio run -e $1 -t uploadfs
}
function ota {
function update {
echo "Updating node at $1"
echo "Updating node at $1 with $2... "
curl -X POST \
-F "file=@.pio/build/esp01_1m/firmware.bin" \
-F "file=@.pio/build/$2/firmware.bin" \
http://$1/api/node/update | jq -r '.status'
}
function all {
echo "Updating all nodes..."
curl -s http://$API_NODE/api/cluster/members | jq -r '.members.[].ip' | while read -r ip; do
ota update $ip
ota update $ip $1
done
}
${@:-info}
@@ -41,4 +69,8 @@ function cluster {
${@:-info}
}
function monitor {
pio run --target monitor
}
${@:-info}

580
docs/API.md Normal file
View File

@@ -0,0 +1,580 @@
# SPORE API Documentation
The SPORE system provides a comprehensive RESTful API for monitoring and controlling the embedded device. All endpoints return JSON responses and support standard HTTP status codes.
## Quick Reference
### Task Management API
| Endpoint | Method | Description | Parameters | Response |
|----------|--------|-------------|------------|----------|
| `/api/tasks/status` | GET | Get comprehensive status of all tasks and system information | None | Task status overview with system metrics |
| `/api/tasks/control` | POST | Control individual task operations | `task`, `action` | Operation result with task details |
### System Status API
| Endpoint | Method | Description | Response |
|----------|--------|-------------|----------|
| `/api/node/status` | GET | System resource information and API endpoint registry | System metrics and API catalog |
| `/api/node/endpoints` | GET | API endpoints and parameters | Detailed endpoint specifications |
| `/api/cluster/members` | GET | Cluster membership and node health information | Cluster topology and health status |
| `/api/node/update` | POST | Handle firmware updates via OTA | Update progress and status |
| `/api/node/restart` | POST | Trigger system restart | Restart confirmation |
### Network Management API
| Endpoint | Method | Description | Response |
|----------|--------|-------------|----------|
| `/api/network/status` | GET | WiFi and network status information | Network configuration and status |
| `/api/network/wifi/scan` | GET | Get available WiFi networks | List of discovered networks |
| `/api/network/wifi/scan` | POST | Trigger WiFi network scan | Scan initiation confirmation |
| `/api/network/wifi/config` | POST | Configure WiFi connection | Connection status and result |
### Hardware Services API
| Endpoint | Method | Description | Response |
|----------|--------|-------------|----------|
| `/api/neopixel/status` | GET | NeoPixel LED strip status | LED configuration and state |
| `/api/neopixel` | POST | NeoPixel pattern and color control | Control confirmation |
| `/api/neopixel/patterns` | GET | Available LED patterns | List of supported patterns |
| `/api/relay/status` | GET | Relay state and configuration | Relay pin and state |
| `/api/relay` | POST | Relay control (on/off/toggle) | Control result |
| `/api/neopattern/status` | GET | NeoPattern service status | Pattern configuration |
| `/api/neopattern` | POST | Advanced LED pattern control | Control confirmation |
| `/api/neopattern/patterns` | GET | Available pattern types | List of supported patterns |
## Detailed API Reference
### Task Management
#### GET /api/tasks/status
Returns comprehensive status information for all registered tasks, including system resource metrics and task execution details.
**Response Fields:**
| Field | Type | Description |
|-------|------|-------------|
| `summary.totalTasks` | integer | Total number of registered tasks |
| `summary.activeTasks` | integer | Number of currently enabled tasks |
| `tasks[].name` | string | Unique task identifier |
| `tasks[].interval` | integer | Execution frequency in milliseconds |
| `tasks[].enabled` | boolean | Whether task is currently enabled |
| `tasks[].running` | boolean | Whether task is actively executing |
| `tasks[].autoStart` | boolean | Whether task starts automatically |
| `system.freeHeap` | integer | Available RAM in bytes |
| `system.uptime` | integer | System uptime in milliseconds |
**Example Response:**
```json
{
"summary": {
"totalTasks": 6,
"activeTasks": 5
},
"tasks": [
{
"name": "discovery_send",
"interval": 1000,
"enabled": true,
"running": true,
"autoStart": true
}
],
"system": {
"freeHeap": 48748,
"uptime": 12345
}
}
```
#### POST /api/tasks/control
Controls the execution state of individual tasks. Supports enabling, disabling, starting, stopping, and getting detailed status for specific tasks.
**Parameters:**
- `task` (required): Name of the task to control
- `action` (required): Action to perform
**Available Actions:**
| Action | Description | Use Case |
|--------|-------------|----------|
| `enable` | Enable a disabled task | Resume background operations |
| `disable` | Disable a running task | Pause resource-intensive tasks |
| `start` | Start a stopped task | Begin task execution |
| `stop` | Stop a running task | Halt task execution |
| `status` | Get detailed status for a specific task | Monitor individual task health |
**Example Response:**
```json
{
"success": true,
"message": "Task enabled",
"task": "heartbeat",
"action": "enable"
}
```
**Task Status Response:**
```json
{
"success": true,
"message": "Task status retrieved",
"task": "discovery_send",
"action": "status",
"taskDetails": {
"name": "discovery_send",
"enabled": true,
"running": true,
"interval": 1000,
"system": {
"freeHeap": 48748,
"uptime": 12345
}
}
}
```
### System Status
#### GET /api/node/status
Returns comprehensive system resource information including memory usage, chip details, and a registry of all available API endpoints.
**Response Fields:**
- `freeHeap`: Available RAM in bytes
- `chipId`: ESP8266 chip ID
- `sdkVersion`: ESP8266 SDK version
- `cpuFreqMHz`: CPU frequency in MHz
- `flashChipSize`: Flash chip size in bytes
- `labels`: Node labels and metadata (if available)
- `api`: Array of registered API endpoints
**Example Response:**
```json
{
"freeHeap": 48748,
"chipId": 12345678,
"sdkVersion": "3.1.2",
"cpuFreqMHz": 80,
"flashChipSize": 1048576,
"labels": {
"location": "kitchen",
"type": "sensor"
}
}
```
#### GET /api/node/endpoints
Returns detailed information about all available API endpoints, including their parameters, types, and validation rules.
**Response Fields:**
- `endpoints[]`: Array of endpoint capability objects
- `uri`: Endpoint URI path
- `method`: HTTP method (GET, POST, etc.)
- `params[]`: Parameter specifications (if applicable)
- `name`: Parameter name
- `location`: Parameter location (body, query, etc.)
- `required`: Whether parameter is required
- `type`: Parameter data type
- `values[]`: Allowed values (for enums)
- `default`: Default value
**Example Response:**
```json
{
"endpoints": [
{
"uri": "/api/tasks/control",
"method": "POST",
"params": [
{
"name": "task",
"location": "body",
"required": true,
"type": "string"
},
{
"name": "action",
"location": "body",
"required": true,
"type": "string",
"values": ["enable", "disable", "start", "stop", "status"]
}
]
}
]
}
```
#### GET /api/cluster/members
Returns information about all nodes in the cluster, including their health status, resources, and API endpoints.
**Response Fields:**
- `members[]`: Array of cluster node information
- `hostname`: Node hostname
- `ip`: Node IP address
- `lastSeen`: Timestamp of last communication
- `latency`: Network latency in milliseconds
- `status`: Node health status (ACTIVE, INACTIVE, DEAD)
- `resources`: System resource information
- `api`: Available API endpoints
### System Management
#### POST /api/node/update
Initiates an over-the-air firmware update. The firmware file should be uploaded as multipart/form-data.
**Parameters:**
- `firmware`: Firmware binary file (.bin)
#### POST /api/node/restart
Triggers a system restart. The response will be sent before the restart occurs.
### Network Management
#### GET /api/network/status
Returns comprehensive WiFi and network status information.
**Response Fields:**
- `wifi.connected`: Whether WiFi is connected
- `wifi.mode`: WiFi mode (STA or AP)
- `wifi.ssid`: Connected network SSID
- `wifi.ip`: Local IP address
- `wifi.mac`: MAC address
- `wifi.hostname`: Device hostname
- `wifi.rssi`: Signal strength
- `wifi.ap_ip`: Access point IP (if in AP mode)
- `wifi.ap_mac`: Access point MAC (if in AP mode)
- `wifi.stations_connected`: Number of connected stations (if in AP mode)
**Example Response:**
```json
{
"wifi": {
"connected": true,
"mode": "STA",
"ssid": "MyNetwork",
"ip": "192.168.1.100",
"mac": "AA:BB:CC:DD:EE:FF",
"hostname": "spore-node-1",
"rssi": -45
}
}
```
#### GET /api/network/wifi/scan
Returns a list of available WiFi networks discovered during the last scan.
**Response Fields:**
- `access_points[]`: Array of discovered networks
- `ssid`: Network name
- `rssi`: Signal strength
- `channel`: WiFi channel
- `encryption_type`: Security type
- `hidden`: Whether network is hidden
- `bssid`: Network MAC address
**Example Response:**
```json
{
"access_points": [
{
"ssid": "MyNetwork",
"rssi": -45,
"channel": 6,
"encryption_type": 4,
"hidden": false,
"bssid": "AA:BB:CC:DD:EE:FF"
}
]
}
```
#### POST /api/network/wifi/scan
Initiates a new WiFi network scan.
**Response:**
```json
{
"status": "scanning",
"message": "WiFi scan started"
}
```
#### POST /api/network/wifi/config
Configures WiFi connection with new credentials.
**Parameters:**
- `ssid` (required): Network SSID
- `password` (required): Network password
- `connect_timeout_ms` (optional): Connection timeout in milliseconds (default: 10000)
- `retry_delay_ms` (optional): Retry delay in milliseconds (default: 500)
**Response:**
```json
{
"status": "success",
"message": "WiFi configuration updated",
"connected": true,
"ip": "192.168.1.100"
}
```
### Hardware Services
#### NeoPixel LED Control
##### GET /api/neopixel/status
Returns current NeoPixel LED strip status and configuration.
**Response Fields:**
- `pin`: GPIO pin number
- `count`: Number of LEDs in strip
- `interval_ms`: Update interval in milliseconds
- `brightness`: Current brightness (0-255)
- `pattern`: Current pattern name
**Example Response:**
```json
{
"pin": 2,
"count": 16,
"interval_ms": 100,
"brightness": 50,
"pattern": "rainbow"
}
```
##### GET /api/neopixel/patterns
Returns list of available LED patterns.
**Response:**
```json
["off", "color_wipe", "rainbow", "rainbow_cycle", "theater_chase", "theater_chase_rainbow"]
```
##### POST /api/neopixel
Controls NeoPixel LED strip patterns and colors.
**Parameters:**
- `pattern` (optional): Pattern name
- `interval_ms` (optional): Update interval in milliseconds
- `brightness` (optional): Brightness level (0-255)
- `color` (optional): Primary color (hex value)
- `r`, `g`, `b` (optional): RGB color values
- `color2` (optional): Secondary color (hex value)
- `r2`, `g2`, `b2` (optional): Secondary RGB values
**Example Request:**
```bash
curl -X POST http://192.168.1.100/api/neopixel \
-d "pattern=rainbow&brightness=100&interval_ms=50"
```
#### Relay Control
##### GET /api/relay/status
Returns current relay status and configuration.
**Response Fields:**
- `pin`: GPIO pin number
- `state`: Current state (on/off)
- `uptime`: System uptime in milliseconds
**Example Response:**
```json
{
"pin": 5,
"state": "off",
"uptime": 12345
}
```
##### POST /api/relay
Controls relay state.
**Parameters:**
- `state` (required): Desired state (on, off, toggle)
**Example Request:**
```bash
curl -X POST http://192.168.1.100/api/relay \
-d "state=on"
```
#### NeoPattern Service
##### GET /api/neopattern/status
Returns NeoPattern service status and configuration.
**Response Fields:**
- `pin`: GPIO pin number
- `count`: Number of LEDs
- `interval_ms`: Update interval
- `brightness`: Current brightness
- `pattern`: Current pattern name
- `total_steps`: Pattern step count
- `color1`: Primary color
- `color2`: Secondary color
##### GET /api/neopattern/patterns
Returns available pattern types.
**Response:**
```json
["off", "rainbow_cycle", "theater_chase", "color_wipe", "scanner", "fade", "fire"]
```
##### POST /api/neopattern
Controls advanced LED patterns.
**Parameters:**
- `pattern` (optional): Pattern name
- `interval_ms` (optional): Update interval
- `brightness` (optional): Brightness level
- `color`, `color2` (optional): Color values
- `r`, `g`, `b`, `r2`, `g2`, `b2` (optional): RGB values
- `total_steps` (optional): Pattern step count
- `direction` (optional): Pattern direction (forward/reverse)
## HTTP Status Codes
| Code | Description | Use Case |
|------|-------------|----------|
| 200 | Success | Operation completed successfully |
| 400 | Bad Request | Invalid parameters or action |
| 404 | Not Found | Task or endpoint not found |
| 500 | Internal Server Error | System error occurred |
## OpenAPI Specification
A complete OpenAPI 3.0 specification is available in the [`api/`](../api/) folder. This specification can be used to:
- Generate client libraries in multiple programming languages
- Create interactive API documentation
- Validate API requests and responses
- Generate mock servers for testing
- Integrate with API management platforms
See [`api/README.md`](../api/README.md) for detailed usage instructions.
## Usage Examples
### Basic Task Status Check
```bash
curl -s http://10.0.1.60/api/tasks/status | jq '.'
```
### Task Control
```bash
# Disable a task
curl -X POST http://10.0.1.60/api/tasks/control \
-d "task=heartbeat&action=disable"
# Get detailed status
curl -X POST http://10.0.1.60/api/tasks/control \
-d "task=discovery_send&action=status"
```
### System Monitoring
```bash
# Check system resources
curl -s http://10.0.1.60/api/node/status | jq '.freeHeap'
# Monitor cluster health
curl -s http://10.0.1.60/api/cluster/members | jq '.members[].status'
```
## Integration Examples
### Python Client
```python
import requests
# Get task status
response = requests.get('http://10.0.1.60/api/tasks/status')
tasks = response.json()
# Check active tasks
active_count = tasks['summary']['activeTasks']
print(f"Active tasks: {active_count}")
# Control a task
control_data = {'task': 'heartbeat', 'action': 'disable'}
response = requests.post('http://10.0.1.60/api/tasks/control', data=control_data)
```
### JavaScript Client
```javascript
// Get task status
fetch('http://10.0.1.60/api/tasks/status')
.then(response => response.json())
.then(data => {
console.log(`Total tasks: ${data.summary.totalTasks}`);
console.log(`Active tasks: ${data.summary.activeTasks}`);
});
// Control a task
fetch('http://10.0.1.60/api/tasks/control', {
method: 'POST',
headers: {'Content-Type': 'application/x-www-form-urlencoded'},
body: 'task=heartbeat&action=disable'
});
```
## Task Management Examples
### Monitoring Task Health
```bash
# Check overall task status
curl -s http://10.0.1.60/api/tasks/status | jq '.'
# Monitor specific task
curl -s -X POST http://10.0.1.60/api/tasks/control \
-d "task=heartbeat&action=status" | jq '.'
# Watch for low memory conditions
watch -n 5 'curl -s http://10.0.1.60/api/tasks/status | jq ".system.freeHeap"'
```
### Task Control Workflows
```bash
# Temporarily disable discovery to reduce network traffic
curl -X POST http://10.0.1.60/api/tasks/control \
-d "task=discovery_send&action=disable"
# Check if it's disabled
curl -s -X POST http://10.0.1.60/api/tasks/control \
-d "task=discovery_send&action=status" | jq '.taskDetails.enabled'
# Re-enable when needed
curl -X POST http://10.0.1.60/api/tasks/control \
-d "task=discovery_send&action=enable"
```
### Cluster Health Monitoring
```bash
# Monitor all nodes in cluster
for ip in 10.0.1.60 10.0.1.61 10.0.1.62; do
echo "=== Node $ip ==="
curl -s "http://$ip/api/tasks/status" | jq '.summary'
done
```

343
docs/Architecture.md Normal file
View File

@@ -0,0 +1,343 @@
# SPORE Architecture & Implementation
## System Overview
SPORE (SProcket ORchestration Engine) is a cluster engine for ESP8266 microcontrollers that provides automatic node discovery, health monitoring, and over-the-air updates in a distributed network environment.
## Core Components
The system architecture consists of several key components working together:
### Network Manager
- **WiFi Connection Handling**: Automatic WiFi STA/AP configuration
- **Hostname Configuration**: MAC-based hostname generation
- **Fallback Management**: Automatic access point creation if WiFi connection fails
### Cluster Manager
- **Node Discovery**: UDP-based automatic node detection
- **Member List Management**: Dynamic cluster membership tracking
- **Health Monitoring**: Continuous node status checking
- **Resource Tracking**: Monitor node resources and capabilities
### API Server
- **HTTP API Server**: RESTful API for cluster management
- **Dynamic Endpoint Registration**: Automatic API endpoint discovery
- **Service Registry**: Track available services across the cluster
### Task Scheduler
- **Cooperative Multitasking**: Background task management system
- **Task Lifecycle Management**: Automatic task execution and monitoring
- **Resource Optimization**: Efficient task scheduling and execution
### Node Context
- **Central Context**: Shared resources and configuration
- **Event System**: Local and cluster-wide event publishing/subscription
- **Resource Management**: Centralized resource allocation and monitoring
## Auto Discovery Protocol
The cluster uses a UDP-based discovery protocol for automatic node detection:
### Discovery Process
1. **Discovery Broadcast**: Nodes periodically send UDP packets on port 4210
2. **Response Handling**: Nodes respond with their hostname and IP address
3. **Member Management**: Discovered nodes are automatically added to the cluster
4. **Health Monitoring**: Continuous status checking via HTTP API calls
### Protocol Details
- **UDP Port**: 4210 (configurable)
- **Discovery Message**: `CLUSTER_DISCOVERY`
- **Response Message**: `CLUSTER_RESPONSE`
- **Broadcast Address**: 255.255.255.255
- **Discovery Interval**: 1 second (configurable)
- **Listen Interval**: 100ms (configurable)
### Node Status Categories
Nodes are automatically categorized by their activity:
- **ACTIVE**: Responding within 10 seconds
- **INACTIVE**: No response for 10-60 seconds
- **DEAD**: No response for over 60 seconds
## Task Scheduling System
The system runs several background tasks at different intervals:
### Core System Tasks
| Task | Interval | Purpose |
|------|----------|---------|
| **Discovery Send** | 1 second | Send UDP discovery packets |
| **Discovery Listen** | 100ms | Listen for discovery responses |
| **Status Updates** | 1 second | Monitor cluster member health |
| **Heartbeat** | 2 seconds | Maintain cluster connectivity |
| **Member Info** | 10 seconds | Update detailed node information |
| **Debug Output** | 5 seconds | Print cluster status |
### Task Management Features
- **Dynamic Intervals**: Change execution frequency on-the-fly
- **Runtime Control**: Enable/disable tasks without restart
- **Status Monitoring**: Real-time task health tracking
- **Resource Integration**: View task status with system resources
## Event System
The `NodeContext` provides an event-driven architecture for system-wide communication:
### Event Subscription
```cpp
// Subscribe to events
ctx.on("node_discovered", [](void* data) {
NodeInfo* node = static_cast<NodeInfo*>(data);
// Handle new node discovery
});
ctx.on("cluster_updated", [](void* data) {
// Handle cluster membership changes
});
```
### Event Publishing
```cpp
// Publish events
ctx.fire("node_discovered", &newNode);
ctx.fire("cluster_updated", &clusterData);
```
### Available Events
- **`node_discovered`**: New node added to cluster
- **`cluster_updated`**: Cluster membership changed
- **`resource_update`**: Node resources updated
- **`health_check`**: Node health status changed
## Resource Monitoring
Each node tracks comprehensive system resources:
### System Resources
- **Free Heap Memory**: Available RAM in bytes
- **Chip ID**: Unique ESP8266 identifier
- **SDK Version**: ESP8266 firmware version
- **CPU Frequency**: Operating frequency in MHz
- **Flash Chip Size**: Total flash storage in bytes
### API Endpoint Registry
- **Dynamic Discovery**: Automatically detect available endpoints
- **Method Information**: HTTP method (GET, POST, etc.)
- **Service Catalog**: Complete service registry across cluster
### Health Metrics
- **Response Time**: API response latency
- **Uptime**: System uptime in milliseconds
- **Connection Status**: Network connectivity health
- **Resource Utilization**: Memory and CPU usage
## WiFi Fallback System
The system includes automatic WiFi fallback for robust operation:
### Fallback Process
1. **Primary Connection**: Attempts to connect to configured WiFi network
2. **Connection Failure**: If connection fails, creates an access point
3. **Hostname Generation**: Automatically generates hostname from MAC address
4. **Service Continuity**: Maintains cluster functionality in fallback mode
### Configuration
- **SSID Format**: `SPORE_<MAC_LAST_4>`
- **Password**: Configurable fallback password
- **IP Range**: 192.168.4.x subnet
- **Gateway**: 192.168.4.1
## Cluster Topology
### Node Types
- **Master Node**: Primary cluster coordinator (if applicable)
- **Worker Nodes**: Standard cluster members
- **Edge Nodes**: Network edge devices
### Network Architecture
- **Mesh-like Structure**: Nodes can communicate with each other
- **Dynamic Routing**: Automatic path discovery between nodes
- **Load Distribution**: Tasks distributed across available nodes
- **Fault Tolerance**: Automatic failover and recovery
## Data Flow
### Node Discovery
1. **UDP Broadcast**: Nodes broadcast discovery packets on port 4210
2. **UDP Response**: Receiving nodes responds with hostname
3. **Registration**: Discovered nodes are added to local cluster member list
### Health Monitoring
1. **Periodic Checks**: Cluster manager polls member nodes every 1 second
2. **Status Collection**: Each node returns resource usage and health metrics
### Task Management
1. **Scheduling**: TaskScheduler executes registered tasks at configured intervals
2. **Execution**: Tasks run cooperatively, yielding control to other tasks
3. **Monitoring**: Task status and results are exposed via REST API endpoints
## Performance Characteristics
### Memory Usage
- **Base System**: ~15-20KB RAM
- **Per Task**: ~100-200 bytes per task
- **Cluster Members**: ~50-100 bytes per member
- **API Endpoints**: ~20-30 bytes per endpoint
### Network Overhead
- **Discovery Packets**: 64 bytes every 1 second
- **Health Checks**: ~200-500 bytes every 1 second
- **Status Updates**: ~1-2KB per node
- **API Responses**: Varies by endpoint (typically 100B-5KB)
### Processing Overhead
- **Task Execution**: Minimal overhead per task
- **Event Processing**: Fast event dispatch
- **JSON Parsing**: Efficient ArduinoJson usage
- **Network I/O**: Asynchronous operations
## Security Considerations
### Current Implementation
- **Network Access**: Local network only (no internet exposure)
- **Authentication**: None currently implemented
- **Data Validation**: Basic input validation
- **Resource Limits**: Memory and processing constraints
### Future Enhancements
- **TLS/SSL**: Encrypted communications
- **API Keys**: Authentication for API access
- **Access Control**: Role-based permissions
- **Audit Logging**: Security event tracking
## Scalability
### Cluster Size Limits
- **Theoretical**: Up to 255 nodes (IP subnet limit)
- **Practical**: 20-50 nodes for optimal performance
- **Memory Constraint**: ~8KB available for member tracking
- **Network Constraint**: UDP packet size limits
### Performance Scaling
- **Linear Scaling**: Most operations scale linearly with node count
- **Discovery Overhead**: Increases with cluster size
- **Health Monitoring**: Parallel HTTP requests
- **Task Management**: Independent per-node execution
## Configuration Management
### Environment Variables
```bash
# API node IP for cluster management
export API_NODE=192.168.1.100
```
### PlatformIO Configuration
The project uses PlatformIO with the following configuration:
- **Framework**: Arduino
- **Board**: ESP-01 with 1MB flash
- **Upload Speed**: 115200 baud
- **Flash Mode**: DOUT (required for ESP-01S)
### Dependencies
The project requires the following libraries:
- `esp32async/ESPAsyncWebServer@^3.8.0` - HTTP API server
- `bblanchon/ArduinoJson@^7.4.2` - JSON processing
- `arkhipenko/TaskScheduler@^3.8.5` - Cooperative multitasking
## Development Workflow
### Building
Build the firmware for specific chip:
```bash
./ctl.sh build target esp01_1m
```
### Flashing
Flash firmware to a connected device:
```bash
./ctl.sh flash target esp01_1m
```
### Over-The-Air Updates
Update a specific node:
```bash
./ctl.sh ota update 192.168.1.100 esp01_1m
```
Update all nodes in the cluster:
```bash
./ctl.sh ota all esp01_1m
```
### Cluster Management
View cluster members:
```bash
./ctl.sh cluster members
```
## Troubleshooting
### Common Issues
1. **Discovery Failures**: Check UDP port 4210 is not blocked
2. **WiFi Connection**: Verify SSID/password in Config.cpp
3. **OTA Updates**: Ensure sufficient flash space (1MB minimum)
4. **Cluster Split**: Check network connectivity between nodes
### Debug Output
Enable serial monitoring to see cluster activity:
```bash
pio device monitor
```
### Performance Monitoring
- **Memory Usage**: Monitor free heap with `/api/node/status`
- **Task Health**: Check task status with `/api/tasks/status`
- **Cluster Health**: Monitor member status with `/api/cluster/members`
- **Network Latency**: Track response times in cluster data
## Related Documentation
- **[Task Management](./TaskManagement.md)** - Background task system
- **[API Reference](./API.md)** - REST API documentation
- **[TaskManager API](./TaskManager.md)** - TaskManager class reference
- **[OpenAPI Specification](../api/)** - Machine-readable API specification

468
docs/Development.md Normal file
View File

@@ -0,0 +1,468 @@
# Development & Deployment Guide
## Prerequisites
### Required Tools
- **PlatformIO Core** or **PlatformIO IDE**
- **ESP8266 development tools**
- **`jq`** for JSON processing in scripts
- **Git** for version control
### System Requirements
- **Operating System**: Linux, macOS, or Windows
- **Python**: 3.7+ (for PlatformIO)
- **Memory**: 4GB+ RAM recommended
- **Storage**: 2GB+ free space for development environment
## Project Structure
```
spore/
├── src/ # Source code
│ ├── main.cpp # Main application entry point
│ ├── ApiServer.cpp # HTTP API server implementation
│ ├── ClusterManager.cpp # Cluster management logic
│ ├── NetworkManager.cpp # WiFi and network handling
│ ├── TaskManager.cpp # Background task management
│ └── NodeContext.cpp # Central context and events
├── include/ # Header files
├── lib/ # Library files
├── docs/ # Documentation
├── api/ # OpenAPI specification
├── examples/ # Example code
├── test/ # Test files
├── platformio.ini # PlatformIO configuration
└── ctl.sh # Build and deployment scripts
```
## PlatformIO Configuration
### Framework and Board
The project uses PlatformIO with the following configuration:
```ini
[env:esp01_1m]
platform = platformio/espressif8266@^4.2.1
board = esp01_1m
framework = arduino
upload_speed = 115200
flash_mode = dout
```
### Key Configuration Details
- **Framework**: Arduino
- **Board**: ESP-01 with 1MB flash
- **Upload Speed**: 115200 baud
- **Flash Mode**: DOUT (required for ESP-01S)
- **Build Type**: Release (optimized for production)
### Dependencies
The project requires the following libraries:
```ini
lib_deps =
esp32async/ESPAsyncWebServer@^3.8.0
bblanchon/ArduinoJson@^7.4.2
arkhipenko/TaskScheduler@^3.8.5
ESP8266HTTPClient@1.2
ESP8266WiFi@1.0
```
### Filesystem, Linker Scripts, and Flash Layout
This project uses LittleFS as the filesystem on ESP8266. Flash layout is controlled by the linker script (ldscript) selected per environment in `platformio.ini`.
- **Filesystem**: LittleFS (replaces SPIFFS). Although ldscripts reference SPIFFS in their names, the reserved region is used by LittleFS transparently.
- **Why ldscript matters**: It defines maximum sketch size and the size of the filesystem area in flash.
| Board / Env | Flash size | ldscript | Filesystem | FS size | Notes |
|-------------|------------|---------|------------|---------|-------|
| esp01_1m | 1MB | `eagle.flash.1m64.ld` | LittleFS | 64KB | Prioritizes sketch size on 1MB modules. OTA is constrained on 1MB.
| d1_mini | 4MB | `eagle.flash.4m1m.ld` | LittleFS | 1MB | Standard 4M/1M layout; ample space for firmware and data.
Configured in `platformio.ini`:
```ini
[env:esp01_1m]
board_build.filesystem = littlefs
board_build.ldscript = eagle.flash.1m64.ld
[env:d1_mini]
board_build.filesystem = littlefs
board_build.ldscript = eagle.flash.4m1m.ld
```
Notes:
- The ldscript name indicates total flash and filesystem size (e.g., `4m1m` = 4MB flash with 1MB FS; `1m64` = 1MB flash with 64KB FS).
- LittleFS works within the filesystem region defined by the ldscript, despite SPIFFS naming.
- If you need a different FS size, select an appropriate ldscript variant and keep `board_build.filesystem = littlefs`.
- On ESP8266, custom partition CSVs are not used for layout; the linker script defines the flash map. This project removed prior `board_build.partitions` usage in favor of explicit `board_build.ldscript` entries per environment.
## Building
### Basic Build Commands
Build the firmware for specific chip:
```bash
# Build for ESP-01 1MB
./ctl.sh build target esp01_1m
# Build for D1 Mini
./ctl.sh build target d1_mini
# Build with verbose output
pio run -v
```
### Build Targets
Available build targets:
| Target | Description | Flash Size |
|--------|-------------|------------|
| `esp01_1m` | ESP-01 with 1MB flash | 1MB |
| `d1_mini` | D1 Mini with 4MB flash | 4MB |
### Build Artifacts
After successful build:
- **Firmware**: `.pio/build/{target}/firmware.bin`
- **ELF File**: `.pio/build/{target}/firmware.elf`
- **Map File**: `.pio/build/{target}/firmware.map`
## Flashing
### Direct USB Flashing
Flash firmware to a connected device:
```bash
# Flash ESP-01
./ctl.sh flash target esp01_1m
# Flash D1 Mini
./ctl.sh flash target d1_mini
# Manual flash command
pio run --target upload
```
### Flash Settings
- **Upload Speed**: 115200 baud (optimal for ESP-01)
- **Flash Mode**: DOUT (required for ESP-01S)
- **Reset Method**: Hardware reset or manual reset
### Troubleshooting Flashing
Common flashing issues:
1. **Connection Failed**: Check USB cable and drivers
2. **Wrong Upload Speed**: Try lower speeds (9600, 57600)
3. **Flash Mode Error**: Ensure DOUT mode for ESP-01S
4. **Permission Denied**: Run with sudo or add user to dialout group
## Over-The-Air Updates
### Single Node Update
Update a specific node:
```bash
# Update specific node
./ctl.sh ota update 192.168.1.100 esp01_1m
# Update with custom firmware
./ctl.sh ota update 192.168.1.100 esp01_1m custom_firmware.bin
```
### Cluster-Wide Updates
Update all nodes in the cluster:
```bash
# Update all nodes
./ctl.sh ota all esp01_1m
```
### OTA Process
1. **Firmware Upload**: Send firmware to target node
2. **Verification**: Check firmware integrity
3. **Installation**: Install new firmware
4. **Restart**: Node restarts with new firmware
5. **Verification**: Confirm successful update
### OTA Requirements
- **Flash Space**: Minimum 1MB for OTA updates
- **Network**: Stable WiFi connection
- **Power**: Stable power supply during update
- **Memory**: Sufficient RAM for firmware processing
## Cluster Management
### View Cluster Status
```bash
# View all cluster members
./ctl.sh cluster members
# View specific node details
./ctl.sh cluster members --node 192.168.1.100
```
### Cluster Commands
Available cluster management commands:
| Command | Description |
|---------|-------------|
| `members` | List all cluster members |
| `status` | Show cluster health status |
| `discover` | Force discovery process |
| `health` | Check cluster member health |
### Cluster Monitoring
Monitor cluster health in real-time:
```bash
# Watch cluster status
watch -n 5 './ctl.sh cluster members'
# Monitor specific metrics
./ctl.sh cluster members | jq '.members[] | {hostname, status, latency}'
```
## Development Workflow
### Local Development
1. **Setup Environment**:
```bash
git clone <repository>
cd spore
pio run
```
2. **Make Changes**:
- Edit source files in `src/`
- Modify headers in `include/`
- Update configuration in `platformio.ini`
3. **Test Changes**:
```bash
pio run
pio check
```
### Testing
Run various tests:
```bash
# Code quality check
pio check
# Unit tests (if available)
pio test
# Memory usage analysis
pio run --target size
```
### Debugging
Enable debug output:
```bash
# Serial monitoring
pio device monitor
# Build with debug symbols
pio run --environment esp01_1m --build-flags -DDEBUG
```
## Configuration Management
### Environment Setup
Create a `.env` file in your project root:
```bash
# API node IP for cluster management
export API_NODE=192.168.1.100
```
### Configuration Files
Key configuration files:
- **`platformio.ini`**: Build and upload configuration
- **`src/Config.cpp`**: Application configuration
- **`.env`**: Environment variables
- **`ctl.sh`**: Build and deployment scripts
### Configuration Options
Available configuration options:
| Option | Default | Description |
|--------|---------|-------------|
| `CLUSTER_PORT` | 4210 | UDP discovery port |
| `DISCOVERY_INTERVAL` | 1000 | Discovery packet interval (ms) |
| `HEALTH_CHECK_INTERVAL` | 1000 | Health check interval (ms) |
| `API_SERVER_PORT` | 80 | HTTP API server port |
## Deployment Strategies
### Development Deployment
For development and testing:
1. **Build**: `pio run`
2. **Flash**: `pio run --target upload`
3. **Monitor**: `pio device monitor`
### Production Deployment
For production systems:
1. **Build Release**: `pio run --environment esp01_1m`
2. **OTA Update**: `./ctl.sh ota update <ip> esp01_1m`
3. **Verify**: Check node status via API
### Continuous Integration
Automated deployment pipeline:
```yaml
# Example GitHub Actions workflow
- name: Build Firmware
run: pio run --environment esp01_1m
- name: Deploy to Test Cluster
run: ./ctl.sh ota all esp01_1m --target test
- name: Deploy to Production
run: ./ctl.sh ota all esp01_1m --target production
```
## Monitoring and Debugging
### Serial Output
Enable serial monitoring:
```bash
# Basic monitoring
pio device monitor
# With specific baud rate
pio device monitor --baud 115200
# Filter specific messages
pio device monitor | grep "Cluster"
```
### API Monitoring
Monitor system via HTTP API:
```bash
# Check system status
curl -s http://192.168.1.100/api/node/status | jq '.'
# Monitor tasks
curl -s http://192.168.1.100/api/tasks/status | jq '.'
# Check cluster health
curl -s http://192.168.1.100/api/cluster/members | jq '.'
```
### Performance Monitoring
Track system performance:
```bash
# Memory usage over time
watch -n 5 'curl -s http://192.168.1.100/api/node/status | jq ".freeHeap"'
# Task execution status
watch -n 10 'curl -s http://192.168.1.100/api/tasks/status | jq ".summary"'
```
## Troubleshooting
### Common Issues
1. **Discovery Failures**: Check UDP port 4210 is not blocked
2. **WiFi Connection**: Verify SSID/password in Config.cpp
3. **OTA Updates**: Ensure sufficient flash space (1MB minimum)
4. **Cluster Split**: Check network connectivity between nodes
### Debug Commands
Useful debugging commands:
```bash
# Check network connectivity
ping 192.168.1.100
# Test UDP port
nc -u 192.168.1.100 4210
# Check HTTP API
curl -v http://192.168.1.100/api/node/status
# Monitor system resources
./ctl.sh cluster members | jq '.members[] | {hostname, status, resources.freeHeap}'
```
### Performance Issues
Common performance problems:
- **Memory Leaks**: Monitor free heap over time
- **Network Congestion**: Check discovery intervals
- **Task Overload**: Review task execution intervals
- **WiFi Interference**: Check channel and signal strength
## Best Practices
### Code Organization
1. **Modular Design**: Keep components loosely coupled
2. **Clear Interfaces**: Define clear APIs between components
3. **Error Handling**: Implement proper error handling and logging
4. **Resource Management**: Efficient memory and resource usage
### Testing Strategy
1. **Unit Tests**: Test individual components
2. **Integration Tests**: Test component interactions
3. **System Tests**: Test complete system functionality
4. **Performance Tests**: Monitor resource usage and performance
### Deployment Strategy
1. **Staged Rollout**: Deploy to test cluster first
2. **Rollback Plan**: Maintain ability to rollback updates
3. **Monitoring**: Monitor system health during deployment
4. **Documentation**: Keep deployment procedures updated
## Related Documentation
- **[Architecture Guide](./Architecture.md)** - System architecture overview
- **[Task Management](./TaskManagement.md)** - Background task system
- **[API Reference](./API.md)** - REST API documentation
- **[OpenAPI Specification](../api/)** - Machine-readable API specification

89
docs/README.md Normal file
View File

@@ -0,0 +1,89 @@
# SPORE Documentation
This folder contains comprehensive documentation for the SPORE embedded system.
## Available Documentation
### 📖 [API.md](./API.md)
Complete API reference with detailed endpoint documentation, examples, and integration guides.
**Includes:**
- API endpoint specifications
- Request/response examples
- HTTP status codes
- Integration examples (Python, JavaScript)
- Task management workflows
- Cluster monitoring examples
### 📖 [TaskManager.md](./TaskManager.md)
Comprehensive guide to the TaskManager system for background task management.
**Includes:**
- Basic usage examples
- Advanced binding techniques
- Task status monitoring
- API integration details
- Performance considerations
### 📖 [TaskManagement.md](./TaskManagement.md)
Complete guide to the task management system with examples and best practices.
**Includes:**
- Task registration methods (std::bind, lambdas, functions)
- Task control and lifecycle management
- Remote task management via API
- Performance considerations and best practices
- Migration guides and compatibility information
### 📖 [Architecture.md](./Architecture.md)
Comprehensive system architecture and implementation details.
**Includes:**
- Core component descriptions
- Auto discovery protocol details
- Task scheduling system
- Event system architecture
- Resource monitoring
- Performance characteristics
- Security and scalability considerations
### 📖 [Development.md](./Development.md)
Complete development and deployment guide.
**Includes:**
- PlatformIO configuration
- Filesystem, linker scripts, and flash layout mapping
- Build and flash instructions
- OTA update procedures
- Cluster management commands
- Development workflow
- Troubleshooting guide
- Best practices
### 📖 [StaticFileService.md](./StaticFileService.md)
Static file hosting over HTTP using LittleFS.
## Quick Links
- **Main Project**: [../README.md](../README.md)
- **OpenAPI Specification**: [../api/](../api/)
- **Source Code**: [../src/](../src/)
## Contributing
When adding new documentation:
1. Create a new `.md` file in this folder
2. Use clear, descriptive filenames
3. Include practical examples and code snippets
4. Update this README.md to reference new files
5. Follow the existing documentation style
## Documentation Style Guide
- Use clear, concise language
- Include practical examples
- Use code blocks with appropriate language tags
- Include links to related documentation
- Use emojis sparingly for visual organization
- Keep README.md files focused and scoped

84
docs/StaticFileService.md Normal file
View File

@@ -0,0 +1,84 @@
# StaticFileService
Serves static files from the device's LittleFS filesystem over HTTP.
## Overview
- Service name: `StaticFileService`
- Mounts: LittleFS at startup
- Endpoints:
- GET / → serves /index.html
- GET /* → serves any file under LittleFS by path
Files are looked up relative to the filesystem root. If a requested path is empty or `/`, it falls back to `index.html`. Unknown paths return 404; a helper exists to fall back to `index.html` for SPA routing if desired.
## Content types
Determined by filename extension:
- .html, .htm → text/html
- .css → text/css
- .js → application/javascript
- .json → application/json
- .png → image/png
- .jpg, .jpeg → image/jpeg
- .gif → image/gif
- .svg → image/svg+xml
- .ico → image/x-icon
- default → application/octet-stream
## Building and uploading the filesystem
Place your web assets under the `data/` folder at the project root. The build system packages `data/` into a LittleFS image matching the environment's flash layout.
### Upload via PlatformIO
```bash
# Build and upload filesystem for esp01_1m
pio run -e esp01_1m -t uploadfs
# Build and upload filesystem for d1_mini
pio run -e d1_mini -t uploadfs
```
### Manual image build (optional)
There are helper commands in `ctl.sh` if you need to build and flash the FS image manually:
```bash
# Build image from ./data into littlefs.bin
./ctl.sh mkfs
# Flash image at preconfigured offset
./ctl.sh flashfs
```
Note: Offsets and sizes must match the environment's ldscript. The project defaults are:
- esp01_1m: ldscript `eagle.flash.1m64.ld` (64KB FS)
- d1_mini: ldscript `eagle.flash.4m1m.ld` (1MB FS)
See `docs/Development.md` for details on filesystem and ldscript mapping.
## Enabling the service
`StaticFileService` is registered as a core service in the framework and enabled by default:
```cpp
// part of Spore::registerCoreServices()
auto staticFileService = std::make_shared<StaticFileService>(ctx, apiServer);
services.push_back(staticFileService);
```
If you maintain a custom build without the default services, ensure you instantiate and add the service before starting the API server.
## Routing notes
- Place your SPA assets in `data/` and reference paths relatively.
- To support client-side routing, you can adapt `handleNotFound` to always serve `/index.html` for unknown paths.
## Troubleshooting
- "LittleFS Mount Failed": Ensure `board_build.filesystem = littlefs` is set and the ldscript provides a filesystem region.
- 404 for known files: Confirm the file exists under `data/` and was uploaded (`pio run -t uploadfs`).
- Incorrect MIME type: Add the extension mapping to `getContentType()` if using custom extensions.

348
docs/TaskManagement.md Normal file
View File

@@ -0,0 +1,348 @@
# Task Management System
The SPORE system includes a comprehensive TaskManager that provides a clean interface for managing system tasks. This makes it easy to add, configure, and control background tasks without cluttering the main application code.
## Overview
The TaskManager system provides:
- **Easy Task Registration**: Simple API for adding new tasks with configurable intervals
- **Dynamic Control**: Enable/disable tasks at runtime
- **Interval Management**: Change task execution frequency on the fly
- **Status Monitoring**: View task status and configuration
- **Automatic Lifecycle**: Tasks are automatically managed and executed
## Basic Usage
```cpp
#include "TaskManager.h"
// Create task manager
TaskManager taskManager(ctx);
// Register tasks
taskManager.registerTask("heartbeat", 2000, heartbeatFunction);
taskManager.registerTask("maintenance", 30000, maintenanceFunction);
// Initialize and start all tasks
taskManager.initialize();
```
## Task Registration Methods
### Using std::bind with Member Functions (Recommended)
```cpp
#include <functional>
#include "TaskManager.h"
class MyService {
public:
void sendHeartbeat() {
Serial.println("Service heartbeat");
}
void performMaintenance() {
Serial.println("Running maintenance");
}
};
MyService service;
TaskManager taskManager(ctx);
// Register member functions using std::bind
taskManager.registerTask("heartbeat", 2000,
std::bind(&MyService::sendHeartbeat, &service));
taskManager.registerTask("maintenance", 30000,
std::bind(&MyService::performMaintenance, &service));
// Initialize and start all tasks
taskManager.initialize();
```
### Using Lambda Functions
```cpp
// Register lambda functions directly
taskManager.registerTask("counter", 1000, []() {
static int count = 0;
Serial.printf("Count: %d\n", ++count);
});
// Lambda with capture
int threshold = 100;
taskManager.registerTask("monitor", 5000, [&threshold]() {
if (ESP.getFreeHeap() < threshold) {
Serial.println("Low memory warning!");
}
});
```
### Complex Task Registration
```cpp
class NetworkManager {
public:
void checkConnection() { /* ... */ }
void sendData(String data) { /* ... */ }
};
NetworkManager network;
// Multiple operations in one task
taskManager.registerTask("network_ops", 3000,
std::bind([](NetworkManager* net) {
net->checkConnection();
net->sendData("status_update");
}, &network));
```
## Task Control API
### Basic Operations
```cpp
// Enable/disable tasks
taskManager.enableTask("heartbeat");
taskManager.disableTask("maintenance");
// Change intervals
taskManager.setTaskInterval("heartbeat", 5000); // 5 seconds
// Check status
bool isRunning = taskManager.isTaskEnabled("heartbeat");
unsigned long interval = taskManager.getTaskInterval("heartbeat");
// Print all task statuses
taskManager.printTaskStatus();
```
### Task Lifecycle Management
```cpp
// Start/stop tasks
taskManager.startTask("heartbeat");
taskManager.stopTask("discovery");
// Bulk operations
taskManager.enableAllTasks();
taskManager.disableAllTasks();
```
## Task Configuration Options
When registering tasks, you can specify:
- **Name**: Unique identifier for the task
- **Interval**: Execution frequency in milliseconds
- **Callback**: Function, bound method, or lambda to execute
- **Enabled**: Whether the task starts enabled (default: true)
- **AutoStart**: Whether to start automatically (default: true)
```cpp
// Traditional function
taskManager.registerTask("delayed_task", 5000, taskFunction, true, false);
// Member function with std::bind
taskManager.registerTask("service_task", 3000,
std::bind(&Service::method, &instance), true, false);
// Lambda function
taskManager.registerTask("lambda_task", 2000,
[]() { Serial.println("Lambda!"); }, true, false);
```
## Adding Custom Tasks
### Method 1: Using std::bind (Recommended)
1. **Create your service class**:
```cpp
class SensorService {
public:
void readTemperature() {
// Read sensor logic
Serial.println("Reading temperature");
}
void calibrateSensors() {
// Calibration logic
Serial.println("Calibrating sensors");
}
};
```
2. **Register with TaskManager**:
```cpp
SensorService sensors;
taskManager.registerTask("temp_read", 1000,
std::bind(&SensorService::readTemperature, &sensors));
taskManager.registerTask("calibrate", 60000,
std::bind(&SensorService::calibrateSensors, &sensors));
```
### Method 2: Traditional Functions
1. **Define your task function**:
```cpp
void myCustomTask() {
// Your task logic here
Serial.println("Custom task executed");
}
```
2. **Register with TaskManager**:
```cpp
taskManager.registerTask("my_task", 10000, myCustomTask);
```
## Enhanced TaskManager Capabilities
### Task Status Monitoring
- **Real-time Status**: Check enabled/disabled state and running status
- **Performance Metrics**: Monitor execution intervals and timing
- **System Integration**: View task status alongside system resources
- **Bulk Operations**: Get status of all tasks at once
### Task Control Features
- **Runtime Control**: Enable/disable tasks without restart
- **Dynamic Intervals**: Change task execution frequency on-the-fly
- **Individual Status**: Get detailed information about specific tasks
- **Health Monitoring**: Track task health and system resources
## Remote Task Management
The TaskManager integrates with the API server to provide comprehensive remote task control and monitoring.
### Task Status Overview
Get a complete overview of all tasks and system status:
```bash
# Get comprehensive task status
curl http://192.168.1.100/api/tasks/status
```
**Response includes:**
- **Summary**: Total task count and active task count
- **Task Details**: Individual status for each task (name, interval, enabled, running, auto-start)
- **System Info**: Free heap memory and uptime
**Example Response:**
```json
{
"summary": {
"totalTasks": 6,
"activeTasks": 5
},
"tasks": [
{
"name": "discovery_send",
"interval": 1000,
"enabled": true,
"running": true,
"autoStart": true
},
{
"name": "heartbeat",
"interval": 2000,
"enabled": true,
"running": true,
"autoStart": true
}
],
"system": {
"freeHeap": 48748,
"uptime": 12345
}
}
```
### Individual Task Control
Control individual tasks with various actions:
```bash
# Control tasks
curl -X POST http://192.168.1.100/api/tasks/control \
-d "task=heartbeat&action=disable"
# Get detailed status for a specific task
curl -X POST http://192.168.1.100/api/tasks/control \
-d "task=discovery_send&action=status"
```
**Available Actions:**
- `enable` - Enable a task
- `disable` - Disable a task
- `start` - Start a task
- `stop` - Stop a task
- `status` - Get detailed status for a specific task
**Task Status Response:**
```json
{
"success": true,
"message": "Task status retrieved",
"task": "discovery_send",
"action": "status",
"taskDetails": {
"name": "discovery_send",
"enabled": true,
"running": true,
"interval": 1000,
"system": {
"freeHeap": 48748,
"uptime": 12345
}
}
}
```
## Performance Considerations
- `std::bind` creates a callable object that may have a small overhead compared to direct function pointers
- For high-frequency tasks, consider the performance impact
- The overhead is typically negligible for most embedded applications
- The TaskManager stores bound functions efficiently in a registry
## Best Practices
1. **Use std::bind for member functions**: Cleaner than wrapper functions
2. **Group related tasks**: Register multiple related operations in a single task
3. **Monitor task health**: Use the status API to monitor task performance
4. **Plan intervals carefully**: Balance responsiveness with system resources
5. **Use descriptive names**: Make task names clear and meaningful
## Migration from Wrapper Functions
### Before (with wrapper functions):
```cpp
void discoverySendTask() { cluster.sendDiscovery(); }
void discoveryListenTask() { cluster.listenForDiscovery(); }
taskManager.registerTask("discovery_send", interval, discoverySendTask);
taskManager.registerTask("discovery_listen", interval, discoveryListenTask);
```
### After (with std::bind):
```cpp
taskManager.registerTask("discovery_send", interval,
std::bind(&ClusterManager::sendDiscovery, &cluster));
taskManager.registerTask("discovery_listen", interval,
std::bind(&ClusterManager::listenForDiscovery, &cluster));
```
## Compatibility
- The new `std::bind` support is fully backward compatible
- Existing code using function pointers will continue to work
- You can mix both approaches in the same project
- All existing TaskManager methods remain unchanged
- New status monitoring methods are additive and don't break existing functionality
## Related Documentation
- **[TaskManager API Reference](./TaskManager.md)** - Detailed API documentation
- **[API Reference](./API.md)** - REST API for remote task management
- **[OpenAPI Specification](../api/)** - Machine-readable API specification

View File

@@ -0,0 +1,165 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Spore</title>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
margin: 0;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
min-height: 100vh;
}
.container {
max-width: 800px;
margin: 0 auto;
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 20px;
padding: 30px;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
}
h1 {
text-align: center;
margin-bottom: 30px;
font-size: 2.5em;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.status-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
margin-bottom: 30px;
}
.status-card {
background: rgba(255, 255, 255, 0.2);
border-radius: 15px;
padding: 20px;
text-align: center;
transition: transform 0.3s ease;
}
.status-card:hover {
transform: translateY(-5px);
}
.status-value {
font-size: 2em;
font-weight: bold;
margin: 10px 0;
}
.api-section {
margin-top: 30px;
}
.api-links {
display: flex;
flex-wrap: wrap;
gap: 10px;
justify-content: center;
}
.api-link {
background: rgba(255, 255, 255, 0.2);
color: white;
text-decoration: none;
padding: 10px 20px;
border-radius: 25px;
transition: all 0.3s ease;
border: 2px solid transparent;
}
.api-link:hover {
background: rgba(255, 255, 255, 0.3);
border-color: rgba(255, 255, 255, 0.5);
transform: translateY(-2px);
}
.loading {
text-align: center;
font-style: italic;
opacity: 0.7;
}
</style>
</head>
<body>
<div class="container">
<h1>🍄 Spore Node</h1>
<div class="status-grid">
<div class="status-card">
<h3>Node Status</h3>
<div class="status-value" id="nodeStatus">Loading...</div>
</div>
<div class="status-card">
<h3>Network</h3>
<div class="status-value" id="networkStatus">Loading...</div>
</div>
<div class="status-card">
<h3>Tasks</h3>
<div class="status-value" id="taskStatus">Loading...</div>
</div>
<div class="status-card">
<h3>Cluster</h3>
<div class="status-value" id="clusterStatus">Loading...</div>
</div>
</div>
<div class="api-section">
<h2>API Endpoints</h2>
<div class="api-links">
<a href="/api/node/status" class="api-link">Node Status</a>
<a href="/api/network/status" class="api-link">Network Status</a>
<a href="/api/tasks/status" class="api-link">Tasks Status</a>
<a href="/api/cluster/members" class="api-link">Cluster Members</a>
<a href="/api/node/endpoints" class="api-link">All Endpoints</a>
</div>
</div>
</div>
<script>
// Load initial data
async function loadStatus() {
try {
const [nodeResponse, networkResponse, taskResponse, clusterResponse] = await Promise.all([
fetch('/api/node/status').then(r => r.json()).catch(() => null),
fetch('/api/network/status').then(r => r.json()).catch(() => null),
fetch('/api/tasks/status').then(r => r.json()).catch(() => null),
fetch('/api/cluster/members').then(r => r.json()).catch(() => null)
]);
// Update node status
if (nodeResponse) {
document.getElementById('nodeStatus').textContent =
nodeResponse.uptime ? `${Math.floor(nodeResponse.uptime / 1000)}s` : 'Online';
}
// Update network status
if (networkResponse) {
document.getElementById('networkStatus').textContent =
networkResponse.connected ? 'Connected' : 'Disconnected';
}
// Update task status
if (taskResponse) {
const activeTasks = taskResponse.tasks ?
taskResponse.tasks.filter(t => t.status === 'running').length : 0;
document.getElementById('taskStatus').textContent = `${activeTasks} active`;
}
// Update cluster status
if (clusterResponse) {
const memberCount = clusterResponse.members ?
Object.keys(clusterResponse.members).length : 0;
document.getElementById('clusterStatus').textContent = `${memberCount} nodes`;
}
} catch (error) {
console.error('Error loading status:', error);
}
}
// Load status on page load
loadStatus();
// Refresh status every 5 seconds
setInterval(loadStatus, 5000);
</script>
</body>
</html>

21
examples/base/main.cpp Normal file
View File

@@ -0,0 +1,21 @@
#include <Arduino.h>
#include "spore/Spore.h"
// Create Spore instance with custom labels
Spore spore({
{"app", "base"},
{"role", "demo"}
});
void setup() {
// Initialize the Spore framework
spore.setup();
// Start the API server and complete initialization
spore.begin();
}
void loop() {
// Run the Spore framework loop
spore.loop();
}

View File

@@ -0,0 +1,376 @@
#include "NeoPattern.h"
// Constructor - calls base-class constructor to initialize strip
NeoPattern::NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(int))
: Adafruit_NeoPixel(pixels, pin, type)
{
frameBuffer = (uint8_t *)malloc(768);
OnComplete = callback;
TotalSteps = numPixels();
begin();
}
NeoPattern::NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type)
: Adafruit_NeoPixel(pixels, pin, type)
{
frameBuffer = (uint8_t *)malloc(768);
TotalSteps = numPixels();
begin();
}
NeoPattern::~NeoPattern() {
if (frameBuffer) {
free(frameBuffer);
}
}
void NeoPattern::handleStream(uint8_t *data, size_t len)
{
//const uint16_t *data16 = (uint16_t *)data;
bufferSize = len;
memcpy(frameBuffer, data, len);
}
void NeoPattern::drawFrameBuffer(int w, uint8_t *frame, int length)
{
for (int i = 0; i < length; i++)
{
uint8_t r = frame[i];
uint8_t g = frame[i + 1];
uint8_t b = frame[i + 2];
setPixelColor(i, r, g, b);
}
}
void NeoPattern::onCompleteDefault(int pixels)
{
//Serial.println("onCompleteDefault");
// FIXME no specific code
if (ActivePattern == THEATER_CHASE)
{
return;
}
Reverse();
//Serial.println("pattern completed");
}
// Increment the Index and reset at the end
void NeoPattern::Increment()
{
completed = 0;
if (Direction == FORWARD)
{
Index++;
if (Index >= TotalSteps)
{
Index = 0;
completed = 1;
if (OnComplete != NULL)
{
OnComplete(numPixels()); // call the comlpetion callback
}
else
{
onCompleteDefault(numPixels());
}
}
}
else // Direction == REVERSE
{
--Index;
if (Index <= 0)
{
Index = TotalSteps - 1;
completed = 1;
if (OnComplete != NULL)
{
OnComplete(numPixels()); // call the comlpetion callback
}
else
{
onCompleteDefault(numPixels());
}
}
}
}
// Reverse pattern direction
void NeoPattern::Reverse()
{
if (Direction == FORWARD)
{
Direction = REVERSE;
Index = TotalSteps - 1;
}
else
{
Direction = FORWARD;
Index = 0;
}
}
// Initialize for a RainbowCycle
void NeoPattern::RainbowCycle(uint8_t interval, direction dir)
{
ActivePattern = RAINBOW_CYCLE;
Interval = interval;
TotalSteps = 255;
Index = 0;
Direction = dir;
}
// Update the Rainbow Cycle Pattern
void NeoPattern::RainbowCycleUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, Wheel(((i * 256 / numPixels()) + Index) & 255));
}
show();
Increment();
}
// Initialize for a Theater Chase
void NeoPattern::TheaterChase(uint32_t color1, uint32_t color2, uint16_t interval, direction dir)
{
ActivePattern = THEATER_CHASE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Theater Chase Pattern
void NeoPattern::TheaterChaseUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
if ((i + Index) % 3 == 0)
{
setPixelColor(i, Color1);
}
else
{
setPixelColor(i, Color2);
}
}
show();
Increment();
}
// Initialize for a ColorWipe
void NeoPattern::ColorWipe(uint32_t color, uint8_t interval, direction dir)
{
ActivePattern = COLOR_WIPE;
Interval = interval;
TotalSteps = numPixels();
Color1 = color;
Index = 0;
Direction = dir;
}
// Update the Color Wipe Pattern
void NeoPattern::ColorWipeUpdate()
{
setPixelColor(Index, Color1);
show();
Increment();
}
// Initialize for a SCANNNER
void NeoPattern::Scanner(uint32_t color1, uint8_t interval)
{
ActivePattern = SCANNER;
Interval = interval;
TotalSteps = (numPixels() - 1) * 2;
Color1 = color1;
Index = 0;
}
// Update the Scanner Pattern
void NeoPattern::ScannerUpdate()
{
for (int i = 0; i < numPixels(); i++)
{
if (i == Index) // Scan Pixel to the right
{
setPixelColor(i, Color1);
}
else if (i == TotalSteps - Index) // Scan Pixel to the left
{
setPixelColor(i, Color1);
}
else // Fading tail
{
setPixelColor(i, DimColor(getPixelColor(i)));
}
}
show();
Increment();
}
// Initialize for a Fade
void NeoPattern::Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir)
{
ActivePattern = FADE;
Interval = interval;
TotalSteps = steps;
Color1 = color1;
Color2 = color2;
Index = 0;
Direction = dir;
}
// Update the Fade Pattern
void NeoPattern::FadeUpdate()
{
// Calculate linear interpolation between Color1 and Color2
// Optimise order of operations to minimize truncation error
uint8_t red = ((Red(Color1) * (TotalSteps - Index)) + (Red(Color2) * Index)) / TotalSteps;
uint8_t green = ((Green(Color1) * (TotalSteps - Index)) + (Green(Color2) * Index)) / TotalSteps;
uint8_t blue = ((Blue(Color1) * (TotalSteps - Index)) + (Blue(Color2) * Index)) / TotalSteps;
ColorSet(Color(red, green, blue));
show();
Increment();
}
// Calculate 50% dimmed version of a color (used by ScannerUpdate)
uint32_t NeoPattern::DimColor(uint32_t color)
{
// Shift R, G and B components one bit to the right
uint32_t dimColor = Color(Red(color) >> 1, Green(color) >> 1, Blue(color) >> 1);
return dimColor;
}
// Set all pixels to a color (synchronously)
void NeoPattern::ColorSet(uint32_t color)
{
for (int i = 0; i < numPixels(); i++)
{
setPixelColor(i, color);
}
show();
}
// Returns the Red component of a 32-bit color
uint8_t NeoPattern::Red(uint32_t color)
{
return (color >> 16) & 0xFF;
}
// Returns the Green component of a 32-bit color
uint8_t NeoPattern::Green(uint32_t color)
{
return (color >> 8) & 0xFF;
}
// Returns the Blue component of a 32-bit color
uint8_t NeoPattern::Blue(uint32_t color)
{
return color & 0xFF;
}
// Input a value 0 to 255 to get a color value.
// The colours are a transition r - g - b - back to r.
uint32_t NeoPattern::Wheel(uint8_t WheelPos)
{
//if(WheelPos == 0) return Color(0,0,0);
WheelPos = 255 - WheelPos;
if (WheelPos < 85)
{
return Color(255 - WheelPos * 3, 0, WheelPos * 3);
}
else if (WheelPos < 170)
{
WheelPos -= 85;
return Color(0, WheelPos * 3, 255 - WheelPos * 3);
}
else
{
WheelPos -= 170;
return Color(WheelPos * 3, 255 - WheelPos * 3, 0);
}
}
/**
* Effects from https://www.tweaking4all.com/hardware/arduino/adruino-led-strip-effects/
*/
void NeoPattern::Fire(int Cooling, int Sparking)
{
uint8_t heat[numPixels()];
int cooldown;
// Step 1. Cool down every cell a little
for (int i = 0; i < numPixels(); i++)
{
cooldown = random(0, ((Cooling * 10) / numPixels()) + 2);
if (cooldown > heat[i])
{
heat[i] = 0;
}
else
{
heat[i] = heat[i] - cooldown;
}
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for (int k = numPixels() - 1; k >= 2; k--)
{
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}
// Step 3. Randomly ignite new 'sparks' near the bottom
if (random(255) < Sparking)
{
int y = random(7);
heat[y] = heat[y] + random(160, 255);
//heat[y] = random(160,255);
}
// Step 4. Convert heat to LED colors
for (int j = 0; j < numPixels(); j++)
{
setPixelHeatColor(j, heat[j]);
}
showStrip();
}
void NeoPattern::setPixelHeatColor(int Pixel, uint8_t temperature)
{
// Scale 'heat' down from 0-255 to 0-191
uint8_t t192 = round((temperature / 255.0) * 191);
// calculate ramp up from
uint8_t heatramp = t192 & 0x3F; // 0..63
heatramp <<= 2; // scale up to 0..252
// figure out which third of the spectrum we're in:
if (t192 > 0x80)
{ // hottest
setPixel(Pixel, 255, 255, heatramp);
}
else if (t192 > 0x40)
{ // middle
setPixel(Pixel, 255, heatramp, 0);
}
else
{ // coolest
setPixel(Pixel, heatramp, 0, 0);
}
}
void NeoPattern::setPixel(int Pixel, uint8_t red, uint8_t green, uint8_t blue)
{
setPixelColor(Pixel, Color(red, green, blue));
}
void NeoPattern::showStrip()
{
show();
}

View File

@@ -0,0 +1,109 @@
/**
* Original NeoPattern code by Bill Earl
* https://learn.adafruit.com/multi-tasking-the-arduino-part-3/overview
*
* Custom modifications by 0x1d:
* - default OnComplete callback that sets pattern to reverse
* - separate animation update from timer; Update now updates directly, UpdateScheduled uses timer
*/
#ifndef __NeoPattern_INCLUDED__
#define __NeoPattern_INCLUDED__
#include <Adafruit_NeoPixel.h>
using namespace std;
// Pattern types supported:
enum pattern
{
NONE = 0,
RAINBOW_CYCLE = 1,
THEATER_CHASE = 2,
COLOR_WIPE = 3,
SCANNER = 4,
FADE = 5,
FIRE = 6
};
// Pattern directions supported:
enum direction
{
FORWARD,
REVERSE
};
// NeoPattern Class - derived from the Adafruit_NeoPixel class
class NeoPattern : public Adafruit_NeoPixel
{
public:
// Member Variables:
pattern ActivePattern = RAINBOW_CYCLE; // which pattern is running
direction Direction = FORWARD; // direction to run the pattern
unsigned long Interval = 150; // milliseconds between updates
unsigned long lastUpdate = 0; // last update of position
uint32_t Color1 = 0;
uint32_t Color2 = 0; // What colors are in use
uint16_t TotalSteps = 32; // total number of steps in the pattern
uint16_t Index; // current step within the pattern
uint16_t completed = 0;
// Callback on completion of pattern
void (*OnComplete)(int);
uint8_t *frameBuffer;
int bufferSize = 0;
// Constructor - calls base-class constructor to initialize strip
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type, void (*callback)(int));
NeoPattern(uint16_t pixels, uint8_t pin, uint8_t type);
~NeoPattern();
// Stream handling
void handleStream(uint8_t *data, size_t len);
void drawFrameBuffer(int w, uint8_t *frame, int length);
// Pattern completion
void onCompleteDefault(int pixels);
// Pattern control
void Increment();
void Reverse();
// Rainbow Cycle
void RainbowCycle(uint8_t interval, direction dir = FORWARD);
void RainbowCycleUpdate();
// Theater Chase
void TheaterChase(uint32_t color1, uint32_t color2, uint16_t interval, direction dir = FORWARD);
void TheaterChaseUpdate();
// Color Wipe
void ColorWipe(uint32_t color, uint8_t interval, direction dir = FORWARD);
void ColorWipeUpdate();
// Scanner
void Scanner(uint32_t color1, uint8_t interval);
void ScannerUpdate();
// Fade
void Fade(uint32_t color1, uint32_t color2, uint16_t steps, uint8_t interval, direction dir = FORWARD);
void FadeUpdate();
// Fire effect
void Fire(int Cooling, int Sparking);
void setPixelHeatColor(int Pixel, uint8_t temperature);
void setPixel(int Pixel, uint8_t red, uint8_t green, uint8_t blue);
void showStrip();
// Utility methods
uint32_t DimColor(uint32_t color);
void ColorSet(uint32_t color);
uint8_t Red(uint32_t color);
uint8_t Green(uint32_t color);
uint8_t Blue(uint32_t color);
uint32_t Wheel(uint8_t WheelPos);
};
#endif

View File

@@ -0,0 +1,451 @@
#include "NeoPatternService.h"
#include "spore/core/ApiServer.h"
#include "spore/util/Logging.h"
#include <ArduinoJson.h>
NeoPatternService::NeoPatternService(TaskManager& taskMgr, const NeoPixelConfig& config)
: taskManager(taskMgr),
config(config),
activePattern(NeoPatternType::RAINBOW_CYCLE),
direction(NeoDirection::FORWARD),
updateIntervalMs(config.updateInterval),
lastUpdateMs(0),
initialized(false) {
// Initialize NeoPattern
neoPattern = new NeoPattern(config.length, config.pin, NEO_GRB + NEO_KHZ800);
neoPattern->setBrightness(config.brightness);
// Initialize state
currentState.pattern = static_cast<uint>(activePattern);
currentState.color = 0xFF0000; // Red
currentState.color2 = 0x0000FF; // Blue
currentState.totalSteps = 16;
currentState.brightness = config.brightness;
// Set initial pattern
neoPattern->Color1 = currentState.color;
neoPattern->Color2 = currentState.color2;
neoPattern->TotalSteps = currentState.totalSteps;
neoPattern->ActivePattern = static_cast<::pattern>(activePattern);
neoPattern->Direction = static_cast<::direction>(direction);
registerPatterns();
registerTasks();
initialized = true;
LOG_INFO("NeoPattern", "Service initialized");
}
NeoPatternService::~NeoPatternService() {
if (neoPattern) {
delete neoPattern;
}
}
void NeoPatternService::registerEndpoints(ApiServer& api) {
// Status endpoint
api.addEndpoint("/api/neopattern/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
// Patterns list endpoint
api.addEndpoint("/api/neopattern/patterns", HTTP_GET,
[this](AsyncWebServerRequest* request) { handlePatternsRequest(request); },
std::vector<ParamSpec>{});
// Control endpoint
api.addEndpoint("/api/neopattern", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{String("pattern"), false, String("body"), String("string"), patternNamesVector()},
ParamSpec{String("color"), false, String("body"), String("color"), {}},
ParamSpec{String("color2"), false, String("body"), String("color"), {}},
ParamSpec{String("brightness"), false, String("body"), String("numberRange"), {}, String("80")},
ParamSpec{String("total_steps"), false, String("body"), String("numberRange"), {}, String("16")},
ParamSpec{String("direction"), false, String("body"), String("string"), {String("forward"), String("reverse")}},
ParamSpec{String("interval"), false, String("body"), String("number"), {}, String("100")}
});
// State endpoint for complex state updates
api.addEndpoint("/api/neopattern/state", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleStateRequest(request); },
std::vector<ParamSpec>{});
}
void NeoPatternService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
doc["pin"] = config.pin;
doc["length"] = config.length;
doc["brightness"] = currentState.brightness;
doc["pattern"] = currentPatternName();
doc["color"] = String(currentState.color, HEX);
doc["color2"] = String(currentState.color2, HEX);
doc["total_steps"] = currentState.totalSteps;
doc["direction"] = (direction == NeoDirection::FORWARD) ? "forward" : "reverse";
doc["interval"] = updateIntervalMs;
doc["active"] = initialized;
// Add pattern metadata
String currentPattern = currentPatternName();
doc["pattern_description"] = getPatternDescription(currentPattern);
doc["pattern_requires_color2"] = patternRequiresColor2(currentPattern);
doc["pattern_supports_direction"] = patternSupportsDirection(currentPattern);
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPatternService::handlePatternsRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
JsonArray arr = doc.to<JsonArray>();
// Get all patterns from registry and include metadata
auto patterns = patternRegistry.getAllPatterns();
for (const auto& pattern : patterns) {
JsonObject patternObj = arr.add<JsonObject>();
patternObj["name"] = pattern.name;
patternObj["type"] = pattern.type;
patternObj["description"] = pattern.description;
patternObj["requires_color2"] = pattern.requiresColor2;
patternObj["supports_direction"] = pattern.supportsDirection;
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NeoPatternService::handleControlRequest(AsyncWebServerRequest* request) {
bool updated = false;
if (request->hasParam("pattern", true)) {
String name = request->getParam("pattern", true)->value();
if (isValidPattern(name)) {
setPatternByName(name);
updated = true;
} else {
// Invalid pattern name - could add error handling here
LOG_WARN("NeoPattern", "Invalid pattern name: " + name);
}
}
if (request->hasParam("color", true)) {
String colorStr = request->getParam("color", true)->value();
uint32_t color = parseColor(colorStr);
setColor(color);
updated = true;
}
if (request->hasParam("color2", true)) {
String colorStr = request->getParam("color2", true)->value();
uint32_t color = parseColor(colorStr);
setColor2(color);
updated = true;
}
if (request->hasParam("brightness", true)) {
int b = request->getParam("brightness", true)->value().toInt();
if (b < 0) b = 0;
if (b > 255) b = 255;
setBrightness(static_cast<uint8_t>(b));
updated = true;
}
if (request->hasParam("total_steps", true)) {
int steps = request->getParam("total_steps", true)->value().toInt();
if (steps > 0) {
setTotalSteps(static_cast<uint16_t>(steps));
updated = true;
}
}
if (request->hasParam("direction", true)) {
String dirStr = request->getParam("direction", true)->value();
NeoDirection dir = (dirStr.equalsIgnoreCase("reverse")) ? NeoDirection::REVERSE : NeoDirection::FORWARD;
setDirection(dir);
updated = true;
}
if (request->hasParam("interval", true)) {
unsigned long interval = request->getParam("interval", true)->value().toInt();
if (interval > 0) {
setUpdateInterval(interval);
updated = true;
}
}
// Return current state
JsonDocument resp;
resp["ok"] = true;
resp["pattern"] = currentPatternName();
resp["color"] = String(currentState.color, HEX);
resp["color2"] = String(currentState.color2, HEX);
resp["brightness"] = currentState.brightness;
resp["total_steps"] = currentState.totalSteps;
resp["direction"] = (direction == NeoDirection::FORWARD) ? "forward" : "reverse";
resp["interval"] = updateIntervalMs;
resp["updated"] = updated;
String json;
serializeJson(resp, json);
request->send(200, "application/json", json);
}
void NeoPatternService::handleStateRequest(AsyncWebServerRequest* request) {
if (request->contentType() != "application/json") {
request->send(400, "application/json", "{\"error\":\"Content-Type must be application/json\"}");
return;
}
// Note: AsyncWebServerRequest doesn't have getBody() method
// For now, we'll skip JSON body parsing and use form parameters
request->send(400, "application/json", "{\"error\":\"JSON body parsing not implemented\"}");
return;
// JSON body parsing not implemented for AsyncWebServerRequest
// This would need to be implemented differently
request->send(501, "application/json", "{\"error\":\"Not implemented\"}");
}
void NeoPatternService::setPattern(NeoPatternType pattern) {
activePattern = pattern;
currentState.pattern = static_cast<uint>(pattern);
neoPattern->ActivePattern = static_cast<::pattern>(pattern);
resetStateForPattern(pattern);
// Initialize the pattern using the registry
patternRegistry.initializePattern(static_cast<uint8_t>(pattern));
}
void NeoPatternService::setPatternByName(const String& name) {
NeoPatternType pattern = nameToPattern(name);
setPattern(pattern);
}
void NeoPatternService::setColor(uint32_t color) {
currentState.color = color;
neoPattern->Color1 = color;
if (activePattern == NeoPatternType::NONE) {
neoPattern->ColorSet(color);
}
}
void NeoPatternService::setColor2(uint32_t color) {
currentState.color2 = color;
neoPattern->Color2 = color;
}
void NeoPatternService::setBrightness(uint8_t brightness) {
currentState.brightness = brightness;
neoPattern->setBrightness(brightness);
neoPattern->show();
}
void NeoPatternService::setTotalSteps(uint16_t steps) {
currentState.totalSteps = steps;
neoPattern->TotalSteps = steps;
}
void NeoPatternService::setDirection(NeoDirection dir) {
direction = dir;
neoPattern->Direction = static_cast<::direction>(dir);
}
void NeoPatternService::setUpdateInterval(unsigned long interval) {
updateIntervalMs = interval;
taskManager.setTaskInterval("neopattern_update", interval);
}
void NeoPatternService::setState(const NeoPatternState& state) {
currentState = state;
// Apply state to NeoPattern
neoPattern->Index = 0;
neoPattern->Color1 = state.color;
neoPattern->Color2 = state.color2;
neoPattern->TotalSteps = state.totalSteps;
neoPattern->ActivePattern = static_cast<::pattern>(state.pattern);
neoPattern->Direction = FORWARD;
setBrightness(state.brightness);
setPattern(static_cast<NeoPatternType>(state.pattern));
}
NeoPatternState NeoPatternService::getState() const {
return currentState;
}
void NeoPatternService::registerTasks() {
taskManager.registerTask("neopattern_update", updateIntervalMs, [this]() { update(); });
taskManager.registerTask("neopattern_status_print", 10000, [this]() {
LOG_INFO("NeoPattern", "Status update");
});
}
void NeoPatternService::registerPatterns() {
// Register all patterns with their metadata and callbacks
patternRegistry.registerPattern(
"none",
static_cast<uint8_t>(NeoPatternType::NONE),
"No pattern - solid color",
[this]() { /* No initialization needed */ },
[this]() { updateNone(); },
false, // doesn't require color2
false // doesn't support direction
);
patternRegistry.registerPattern(
"rainbow_cycle",
static_cast<uint8_t>(NeoPatternType::RAINBOW_CYCLE),
"Rainbow cycle pattern",
[this]() { neoPattern->RainbowCycle(updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateRainbowCycle(); },
false, // doesn't require color2
true // supports direction
);
patternRegistry.registerPattern(
"theater_chase",
static_cast<uint8_t>(NeoPatternType::THEATER_CHASE),
"Theater chase pattern",
[this]() { neoPattern->TheaterChase(currentState.color, currentState.color2, updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateTheaterChase(); },
true, // requires color2
true // supports direction
);
patternRegistry.registerPattern(
"color_wipe",
static_cast<uint8_t>(NeoPatternType::COLOR_WIPE),
"Color wipe pattern",
[this]() { neoPattern->ColorWipe(currentState.color, updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateColorWipe(); },
false, // doesn't require color2
true // supports direction
);
patternRegistry.registerPattern(
"scanner",
static_cast<uint8_t>(NeoPatternType::SCANNER),
"Scanner pattern",
[this]() { neoPattern->Scanner(currentState.color, updateIntervalMs); },
[this]() { updateScanner(); },
false, // doesn't require color2
false // doesn't support direction
);
patternRegistry.registerPattern(
"fade",
static_cast<uint8_t>(NeoPatternType::FADE),
"Fade pattern",
[this]() { neoPattern->Fade(currentState.color, currentState.color2, currentState.totalSteps, updateIntervalMs, static_cast<::direction>(direction)); },
[this]() { updateFade(); },
true, // requires color2
true // supports direction
);
patternRegistry.registerPattern(
"fire",
static_cast<uint8_t>(NeoPatternType::FIRE),
"Fire effect pattern",
[this]() { neoPattern->Fire(50, 120); },
[this]() { updateFire(); },
false, // doesn't require color2
false // doesn't support direction
);
}
std::vector<String> NeoPatternService::patternNamesVector() const {
return patternRegistry.getAllPatternNames();
}
String NeoPatternService::currentPatternName() const {
return patternRegistry.getPatternName(static_cast<uint8_t>(activePattern));
}
NeoPatternService::NeoPatternType NeoPatternService::nameToPattern(const String& name) const {
uint8_t type = patternRegistry.getPatternType(name);
return static_cast<NeoPatternType>(type);
}
void NeoPatternService::resetStateForPattern(NeoPatternType pattern) {
neoPattern->Index = 0;
neoPattern->Direction = static_cast<::direction>(direction);
neoPattern->completed = 0;
lastUpdateMs = 0;
}
uint32_t NeoPatternService::parseColor(const String& colorStr) const {
if (colorStr.startsWith("#")) {
return strtoul(colorStr.substring(1).c_str(), nullptr, 16);
} else if (colorStr.startsWith("0x") || colorStr.startsWith("0X")) {
return strtoul(colorStr.c_str(), nullptr, 16);
} else {
return strtoul(colorStr.c_str(), nullptr, 10);
}
}
bool NeoPatternService::isValidPattern(const String& name) const {
return patternRegistry.isValidPattern(name);
}
bool NeoPatternService::isValidPattern(NeoPatternType type) const {
return patternRegistry.isValidPattern(static_cast<uint8_t>(type));
}
bool NeoPatternService::patternRequiresColor2(const String& name) const {
const PatternInfo* info = patternRegistry.getPattern(name);
return info ? info->requiresColor2 : false;
}
bool NeoPatternService::patternSupportsDirection(const String& name) const {
const PatternInfo* info = patternRegistry.getPattern(name);
return info ? info->supportsDirection : false;
}
String NeoPatternService::getPatternDescription(const String& name) const {
const PatternInfo* info = patternRegistry.getPattern(name);
return info ? info->description : "";
}
void NeoPatternService::update() {
if (!initialized) return;
//unsigned long now = millis();
//if (now - lastUpdateMs < updateIntervalMs) return;
//lastUpdateMs = now;
// Use pattern registry to execute the current pattern
patternRegistry.executePattern(static_cast<uint8_t>(activePattern));
}
void NeoPatternService::updateRainbowCycle() {
neoPattern->RainbowCycleUpdate();
}
void NeoPatternService::updateTheaterChase() {
neoPattern->TheaterChaseUpdate();
}
void NeoPatternService::updateColorWipe() {
neoPattern->ColorWipeUpdate();
}
void NeoPatternService::updateScanner() {
neoPattern->ScannerUpdate();
}
void NeoPatternService::updateFade() {
neoPattern->FadeUpdate();
}
void NeoPatternService::updateFire() {
neoPattern->Fire(50, 120);
}
void NeoPatternService::updateNone() {
// For NONE pattern, just show the current color
neoPattern->ColorSet(neoPattern->Color1);
}

View File

@@ -0,0 +1,95 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/TaskManager.h"
#include "NeoPattern.h"
#include "NeoPatternState.h"
#include "NeoPixelConfig.h"
#include "PatternRegistry.h"
#include <map>
#include <functional>
class NeoPatternService : public Service {
public:
enum class NeoPatternType {
NONE = 0,
RAINBOW_CYCLE = 1,
THEATER_CHASE = 2,
COLOR_WIPE = 3,
SCANNER = 4,
FADE = 5,
FIRE = 6
};
enum class NeoDirection {
FORWARD,
REVERSE
};
NeoPatternService(TaskManager& taskMgr, const NeoPixelConfig& config);
~NeoPatternService();
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "NeoPattern"; }
// Pattern control methods
void setPattern(NeoPatternType pattern);
void setPatternByName(const String& name);
void setColor(uint32_t color);
void setColor2(uint32_t color2);
void setBrightness(uint8_t brightness);
void setTotalSteps(uint16_t steps);
void setDirection(NeoDirection direction);
void setUpdateInterval(unsigned long interval);
// State management
void setState(const NeoPatternState& state);
NeoPatternState getState() const;
private:
void registerTasks();
void registerPatterns();
void update();
// Pattern updaters
void updateRainbowCycle();
void updateTheaterChase();
void updateColorWipe();
void updateScanner();
void updateFade();
void updateFire();
void updateNone();
// API handlers
void handleStatusRequest(AsyncWebServerRequest* request);
void handlePatternsRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
void handleStateRequest(AsyncWebServerRequest* request);
// Utility methods
std::vector<String> patternNamesVector() const;
String currentPatternName() const;
NeoPatternType nameToPattern(const String& name) const;
void resetStateForPattern(NeoPatternType pattern);
uint32_t parseColor(const String& colorStr) const;
// Pattern validation methods
bool isValidPattern(const String& name) const;
bool isValidPattern(NeoPatternType type) const;
bool patternRequiresColor2(const String& name) const;
bool patternSupportsDirection(const String& name) const;
String getPatternDescription(const String& name) const;
TaskManager& taskManager;
NeoPattern* neoPattern;
NeoPixelConfig config;
NeoPatternState currentState;
// Pattern registry for centralized pattern management
PatternRegistry patternRegistry;
NeoPatternType activePattern;
NeoDirection direction;
unsigned long updateIntervalMs;
unsigned long lastUpdateMs;
bool initialized;
};

View File

@@ -0,0 +1,59 @@
#ifndef __NEOPATTERN_STATE__
#define __NEOPATTERN_STATE__
#include <ArduinoJson.h>
struct NeoPatternState {
// Default values
static constexpr uint DEFAULT_PATTERN = 0;
static constexpr uint DEFAULT_COLOR = 0xFF0000; // Red
static constexpr uint DEFAULT_COLOR2 = 0x0000FF; // Blue
static constexpr uint DEFAULT_TOTAL_STEPS = 16;
static constexpr uint DEFAULT_BRIGHTNESS = 64;
uint pattern = DEFAULT_PATTERN;
uint color = DEFAULT_COLOR;
uint color2 = DEFAULT_COLOR2;
uint totalSteps = DEFAULT_TOTAL_STEPS;
uint brightness = DEFAULT_BRIGHTNESS;
NeoPatternState() = default;
NeoPatternState(uint p, uint c, uint c2, uint steps, uint b)
: pattern(p), color(c), color2(c2), totalSteps(steps), brightness(b) {}
void mapJsonObject(JsonObject& root) const {
root["pattern"] = pattern;
root["color"] = color;
root["color2"] = color2;
root["totalSteps"] = totalSteps;
root["brightness"] = brightness;
}
void fromJsonObject(JsonObject& json) {
pattern = json["pattern"] | pattern;
color = json["color"] | color;
color2 = json["color2"] | color2;
totalSteps = json["totalSteps"] | totalSteps;
brightness = json["brightness"] | brightness;
}
// Helper methods for JSON string conversion
String toJsonString() const {
JsonDocument doc;
JsonObject root = doc.to<JsonObject>();
mapJsonObject(root);
String result;
serializeJson(doc, result);
return result;
}
void fromJsonString(const String& jsonStr) {
JsonDocument doc;
deserializeJson(doc, jsonStr);
JsonObject root = doc.as<JsonObject>();
fromJsonObject(root);
}
};
#endif

View File

@@ -0,0 +1,45 @@
#ifndef __NEOPIXEL_CONFIG__
#define __NEOPIXEL_CONFIG__
#include <ArduinoJson.h>
struct NeoPixelConfig
{
// Configuration constants
static constexpr int DEFAULT_PIN = 2;
static constexpr int DEFAULT_LENGTH = 8;
static constexpr int DEFAULT_BRIGHTNESS = 100;
static constexpr int DEFAULT_UPDATE_INTERVAL = 100;
static constexpr int DEFAULT_COLOR = 0xFF0000; // Red
int pin = DEFAULT_PIN;
int length = DEFAULT_LENGTH;
int brightness = DEFAULT_BRIGHTNESS;
int updateInterval = DEFAULT_UPDATE_INTERVAL;
int defaultColor = DEFAULT_COLOR;
NeoPixelConfig() = default;
NeoPixelConfig(int p, int l, int b, int interval, int color = DEFAULT_COLOR)
: pin(p), length(l), brightness(b), updateInterval(interval), defaultColor(color) {}
void mapJsonObject(JsonObject &root) const
{
root["pin"] = pin;
root["length"] = length;
root["brightness"] = brightness;
root["updateInterval"] = updateInterval;
root["defaultColor"] = defaultColor;
}
void fromJsonObject(JsonObject &json)
{
pin = json["pin"] | pin;
length = json["length"] | length;
brightness = json["brightness"] | brightness;
updateInterval = json["updateInterval"] | updateInterval;
defaultColor = json["defaultColor"] | defaultColor;
}
};
#endif

View File

@@ -0,0 +1,101 @@
#include "PatternRegistry.h"
PatternRegistry::PatternRegistry() {
// Constructor - patterns will be registered by the service
}
void PatternRegistry::registerPattern(const PatternInfo& pattern) {
patternMap_[pattern.name] = pattern;
typeToNameMap_[pattern.type] = pattern.name;
}
void PatternRegistry::registerPattern(const String& name, uint8_t type, const String& description,
std::function<void()> initializer, std::function<void()> updater,
bool requiresColor2, bool supportsDirection) {
PatternInfo info(name, type, description, initializer, updater, requiresColor2, supportsDirection);
registerPattern(info);
}
const PatternInfo* PatternRegistry::getPattern(const String& name) const {
auto it = patternMap_.find(name);
return (it != patternMap_.end()) ? &it->second : nullptr;
}
const PatternInfo* PatternRegistry::getPattern(uint8_t type) const {
auto typeIt = typeToNameMap_.find(type);
if (typeIt == typeToNameMap_.end()) {
return nullptr;
}
return getPattern(typeIt->second);
}
String PatternRegistry::getPatternName(uint8_t type) const {
auto it = typeToNameMap_.find(type);
return (it != typeToNameMap_.end()) ? it->second : "";
}
uint8_t PatternRegistry::getPatternType(const String& name) const {
const PatternInfo* info = getPattern(name);
return info ? info->type : 0;
}
std::vector<String> PatternRegistry::getAllPatternNames() const {
std::vector<String> names;
names.reserve(patternMap_.size());
for (const auto& pair : patternMap_) {
names.push_back(pair.first);
}
return names;
}
std::vector<PatternInfo> PatternRegistry::getAllPatterns() const {
std::vector<PatternInfo> patterns;
patterns.reserve(patternMap_.size());
for (const auto& pair : patternMap_) {
patterns.push_back(pair.second);
}
return patterns;
}
bool PatternRegistry::isValidPattern(const String& name) const {
return patternMap_.find(name) != patternMap_.end();
}
bool PatternRegistry::isValidPattern(uint8_t type) const {
return typeToNameMap_.find(type) != typeToNameMap_.end();
}
void PatternRegistry::executePattern(const String& name) const {
const PatternInfo* info = getPattern(name);
if (info && info->updater) {
info->updater();
}
}
void PatternRegistry::executePattern(uint8_t type) const {
const PatternInfo* info = getPattern(type);
if (info && info->updater) {
info->updater();
}
}
void PatternRegistry::initializePattern(const String& name) const {
const PatternInfo* info = getPattern(name);
if (info && info->initializer) {
info->initializer();
}
}
void PatternRegistry::initializePattern(uint8_t type) const {
const PatternInfo* info = getPattern(type);
if (info && info->initializer) {
info->initializer();
}
}
void PatternRegistry::updateTypeMap() {
typeToNameMap_.clear();
for (const auto& pair : patternMap_) {
typeToNameMap_[pair.second.type] = pair.first;
}
}

View File

@@ -0,0 +1,73 @@
#pragma once
#include <map>
#include <functional>
#include <vector>
#include <Arduino.h>
/**
* PatternInfo structure containing all information needed for a pattern
*/
struct PatternInfo {
String name;
uint8_t type;
String description;
std::function<void()> updater;
std::function<void()> initializer;
bool requiresColor2;
bool supportsDirection;
// Default constructor for std::map compatibility
PatternInfo() : type(0), requiresColor2(false), supportsDirection(false) {}
// Parameterized constructor
PatternInfo(const String& n, uint8_t t, const String& desc,
std::function<void()> initFunc, std::function<void()> updateFunc = nullptr,
bool needsColor2 = false, bool supportsDir = true)
: name(n), type(t), description(desc), updater(updateFunc),
initializer(initFunc), requiresColor2(needsColor2), supportsDirection(supportsDir) {}
};
/**
* PatternRegistry class for centralized pattern management
*/
class PatternRegistry {
public:
using PatternMap = std::map<String, PatternInfo>;
using PatternTypeMap = std::map<uint8_t, String>;
PatternRegistry();
~PatternRegistry() = default;
// Pattern registration
void registerPattern(const PatternInfo& pattern);
void registerPattern(const String& name, uint8_t type, const String& description,
std::function<void()> initializer, std::function<void()> updater = nullptr,
bool requiresColor2 = false, bool supportsDirection = true);
// Pattern lookup
const PatternInfo* getPattern(const String& name) const;
const PatternInfo* getPattern(uint8_t type) const;
String getPatternName(uint8_t type) const;
uint8_t getPatternType(const String& name) const;
// Pattern enumeration
std::vector<String> getAllPatternNames() const;
std::vector<PatternInfo> getAllPatterns() const;
const PatternMap& getPatternMap() const { return patternMap_; }
// Pattern validation
bool isValidPattern(const String& name) const;
bool isValidPattern(uint8_t type) const;
// Pattern execution
void executePattern(const String& name) const;
void executePattern(uint8_t type) const;
void initializePattern(const String& name) const;
void initializePattern(uint8_t type) const;
private:
PatternMap patternMap_;
PatternTypeMap typeToNameMap_;
void updateTypeMap();
};

View File

@@ -0,0 +1,131 @@
# NeoPattern Service for Spore Framework
This example demonstrates how to integrate a NeoPixel pattern service with the Spore framework. It provides a comprehensive LED strip control system with multiple animation patterns and REST API endpoints.
## Features
- **Multiple Animation Patterns**: Rainbow cycle, theater chase, color wipe, scanner, fade, and fire effects
- **REST API Control**: Full HTTP API for pattern control and configuration
- **Real-time Updates**: Smooth pattern transitions and real-time parameter changes
- **State Management**: Persistent state with JSON serialization
- **Spore Integration**: Built on the Spore framework for networking and task management
## Hardware Requirements
- ESP32 or compatible microcontroller
- NeoPixel LED strip (WS2812B or compatible)
- Appropriate power supply for your LED strip
## Configuration
Edit `NeoPixelConfig.h` to configure your setup:
```cpp
static constexpr int DEFAULT_PIN = 2;
static constexpr int DEFAULT_LENGTH = 8;
static constexpr int DEFAULT_BRIGHTNESS = 100;
static constexpr int DEFAULT_UPDATE_INTERVAL = 100;
static constexpr int DEFAULT_COLOR = 0xFF0000; // Red
```
## API Endpoints
### Status Information
- `GET /api/neopattern/status` - Get current status and configuration
- `GET /api/neopattern/patterns` - List available patterns
### Pattern Control
- `POST /api/neopattern` - Control pattern parameters
- `pattern`: Pattern name (none, rainbow_cycle, theater_chase, color_wipe, scanner, fade, fire)
- `color`: Primary color (hex string like "#FF0000" or "0xFF0000")
- `color2`: Secondary color for two-color patterns
- `brightness`: Brightness level (0-255)
- `total_steps`: Number of steps for patterns
- `direction`: Pattern direction (forward, reverse)
- `interval`: Update interval in milliseconds
### State Management
- `POST /api/neopattern/state` - Set complete state via JSON
## Example API Usage
### Set a rainbow cycle pattern
```bash
curl -X POST http://esp32-ip/api/neopattern \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "pattern=rainbow_cycle&interval=50"
```
### Set custom colors for theater chase
```bash
curl -X POST http://esp32-ip/api/neopattern \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "pattern=theater_chase&color=0xFF0000&color2=0x0000FF&brightness=150"
```
### Set complete state via JSON
```bash
curl -X POST http://esp32-ip/api/neopattern/state \
-H "Content-Type: application/json" \
-d '{
"pattern": 3,
"color": 16711680,
"color2": 255,
"totalSteps": 32,
"brightness": 128
}'
```
## Available Patterns
1. **none** - Static color display
2. **rainbow_cycle** - Smooth rainbow cycling
3. **theater_chase** - Moving dots with two colors
4. **color_wipe** - Progressive color filling
5. **scanner** - Scanning light effect
6. **fade** - Smooth color transition
7. **fire** - Fire simulation effect
## Building and Flashing
1. Install PlatformIO
2. Configure your `platformio.ini` to include the Spore framework
3. Build and upload:
```bash
pio run -t upload
```
## Integration with Spore Framework
This service integrates with the Spore framework by:
- Extending the `Service` base class
- Using `TaskManager` for pattern updates
- Registering REST API endpoints with `ApiServer`
- Following Spore's logging and configuration patterns
The service automatically registers itself with the Spore framework and provides all functionality through the standard Spore API infrastructure.
## Customization
To add new patterns:
1. Add the pattern enum to `NeoPatternService.h`
2. Implement the pattern logic in `NeoPattern.cpp`
3. Add the pattern updater to `registerPatterns()` in `NeoPatternService.cpp`
4. Update the pattern mapping in `nameToPatternMap`
## Troubleshooting
- **LEDs not lighting**: Check wiring and power supply
- **Patterns not updating**: Verify the update interval and task registration
- **API not responding**: Check network configuration and Spore framework setup
- **Memory issues**: Reduce LED count or pattern complexity
## Dependencies
- Spore Framework
- Adafruit NeoPixel library
- ArduinoJson
- ESP32 Arduino Core

View File

@@ -0,0 +1,60 @@
#include <Arduino.h>
#include "spore/Spore.h"
#include "spore/util/Logging.h"
#include "NeoPatternService.h"
#include "NeoPixelConfig.h"
// Configuration constants
#ifndef NEOPIXEL_PIN
#define NEOPIXEL_PIN 2
#endif
#ifndef NEOPIXEL_LENGTH
#define NEOPIXEL_LENGTH 8
#endif
#ifndef NEOPIXEL_BRIGHTNESS
#define NEOPIXEL_BRIGHTNESS 100
#endif
#ifndef NEOPIXEL_UPDATE_INTERVAL
#define NEOPIXEL_UPDATE_INTERVAL 100
#endif
// Create Spore instance with custom labels
Spore spore({
{"app", "neopattern"},
{"role", "led"},
{"pixels", String(NEOPIXEL_LENGTH)},
{"pin", String(NEOPIXEL_PIN)}
});
// Create custom service
NeoPatternService* neoPatternService = nullptr;
void setup() {
// Initialize the Spore framework
spore.setup();
// Create configuration
NeoPixelConfig config(
NEOPIXEL_PIN,
NEOPIXEL_LENGTH,
NEOPIXEL_BRIGHTNESS,
NEOPIXEL_UPDATE_INTERVAL
);
// Create and add custom service
neoPatternService = new NeoPatternService(spore.getTaskManager(), config);
spore.addService(neoPatternService);
// Start the API server and complete initialization
spore.begin();
LOG_INFO("Main", "NeoPattern service registered and ready!");
}
void loop() {
// Run the Spore framework loop
spore.loop();
}

143
examples/relay/README.md Normal file
View File

@@ -0,0 +1,143 @@
# Relay Service Example
A minimal example that demonstrates the Spore framework with a custom RelayService and web interface. The Spore framework automatically handles all core functionality (WiFi, clustering, API server, task management) while allowing easy registration of custom services.
## Features
- **API Control**: RESTful API endpoints for programmatic control
- **Web Interface**: Beautiful web UI for manual control at `http://<device-ip>/relay.html`
- **Real-time Status**: Live status updates and visual feedback
- **Toggle Functionality**: One-click toggle between ON/OFF states
- Default relay pin: `GPIO0` (ESP-01). Override with `-DRELAY_PIN=<pin>`.
- WiFi and API port are configured in `src/Config.cpp`.
## Spore Framework Usage
This example demonstrates the simplified Spore framework approach:
```cpp
#include <Arduino.h>
#include "Spore.h"
#include "RelayService.h"
Spore spore({
{"app", "relay"},
{"device", "actuator"},
{"pin", String(RELAY_PIN)}
});
RelayService* relayService = nullptr;
void setup() {
spore.setup();
relayService = new RelayService(spore.getContext(), spore.getTaskManager(), RELAY_PIN);
spore.addService(relayService);
spore.begin();
}
void loop() {
spore.loop();
}
```
The Spore framework automatically provides:
- WiFi connectivity management
- Cluster discovery and management
- REST API server with core endpoints
- Task scheduling and execution
- Node status monitoring
- Static file serving for web interfaces (core service)
## Build & Upload
- ESP01S:
```bash
pio run -e esp01_1m_relay -t upload
```
- D1 Mini:
```bash
pio run -e d1_mini_relay -t upload
```
Monitor serial logs:
```bash
pio device monitor -b 115200
```
Assume the device IP is 192.168.1.50 below (replace with your device's IP shown in serial output).
## Web Interface
The web interface is located in the `data/` folder and will be served by the core StaticFileService.
Access the web interface at: `http://192.168.1.50/relay.html`
The web interface provides:
- Visual status indicator (red for OFF, green for ON)
- Turn ON/OFF buttons
- Toggle button for quick switching
- Real-time status updates every 2 seconds
- Uptime display
- Error handling and user feedback
## Relay API
- Get relay status
```bash
curl http://192.168.1.50/api/relay/status
```
- Turn relay ON
```bash
curl -X POST http://192.168.1.50/api/relay -d state=on
```
- Turn relay OFF
```bash
curl -X POST http://192.168.1.50/api/relay -d state=off
```
- Toggle relay
```bash
curl -X POST http://192.168.1.50/api/relay -d state=toggle
```
Notes:
- Requests use `application/x-www-form-urlencoded` by default when using `curl -d`.
## Task Management (optional)
The example registers a periodic task `relay_status_print` that logs the current relay state.
- Fetch all task statuses
```bash
curl http://192.168.1.50/api/tasks/status
```
- Query a specific task status
```bash
curl -X POST http://192.168.1.50/api/tasks/control \
-d task=relay_status_print -d action=status
```
- Enable / Disable the task
```bash
curl -X POST http://192.168.1.50/api/tasks/control \
-d task=relay_status_print -d action=enable
curl -X POST http://192.168.1.50/api/tasks/control \
-d task=relay_status_print -d action=disable
```
## General System Endpoints (optional)
- Node status
```bash
curl http://192.168.1.50/api/node/status
```
- Restart device
```bash
curl -X POST http://192.168.1.50/api/node/restart
```

View File

@@ -0,0 +1,89 @@
#include "RelayService.h"
#include "spore/core/ApiServer.h"
#include "spore/util/Logging.h"
RelayService::RelayService(NodeContext& ctx, TaskManager& taskMgr, int pin)
: ctx(ctx), taskManager(taskMgr), relayPin(pin), relayOn(false) {
pinMode(relayPin, OUTPUT);
// Many relay modules are active LOW. Start in OFF state (relay de-energized).
digitalWrite(relayPin, HIGH);
registerTasks();
}
void RelayService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/relay/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{});
api.addEndpoint("/api/relay", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{String("state"), true, String("body"), String("string"),
{String("on"), String("off"), String("toggle")}}
});
}
void RelayService::handleStatusRequest(AsyncWebServerRequest* request) {
JsonDocument doc;
doc["pin"] = relayPin;
doc["state"] = relayOn ? "on" : "off";
doc["uptime"] = millis();
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void RelayService::handleControlRequest(AsyncWebServerRequest* request) {
String state = request->hasParam("state", true) ? request->getParam("state", true)->value() : "";
bool ok = false;
if (state.equalsIgnoreCase("on")) {
turnOn();
ok = true;
} else if (state.equalsIgnoreCase("off")) {
turnOff();
ok = true;
} else if (state.equalsIgnoreCase("toggle")) {
toggle();
ok = true;
}
JsonDocument resp;
resp["success"] = ok;
resp["state"] = relayOn ? "on" : "off";
if (!ok) {
resp["message"] = "Invalid state. Use: on, off, or toggle";
}
String json;
serializeJson(resp, json);
request->send(ok ? 200 : 400, "application/json", json);
}
void RelayService::turnOn() {
relayOn = true;
// Active LOW relay
digitalWrite(relayPin, LOW);
LOG_INFO("RelayService", "Relay ON");
}
void RelayService::turnOff() {
relayOn = false;
digitalWrite(relayPin, HIGH);
LOG_INFO("RelayService", "Relay OFF");
}
void RelayService::toggle() {
if (relayOn) {
turnOff();
} else {
turnOn();
}
}
void RelayService::registerTasks() {
taskManager.registerTask("relay_status_print", 5000, [this]() {
LOG_INFO("RelayService", "Status - pin: " + String(relayPin) + ", state: " + (relayOn ? "ON" : "OFF"));
});
}

View File

@@ -0,0 +1,27 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/TaskManager.h"
#include "spore/core/NodeContext.h"
#include <ArduinoJson.h>
class RelayService : public Service {
public:
RelayService(NodeContext& ctx, TaskManager& taskMgr, int pin);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Relay"; }
void turnOn();
void turnOff();
void toggle();
private:
void registerTasks();
NodeContext& ctx;
TaskManager& taskManager;
int relayPin;
bool relayOn;
void handleStatusRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,305 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Relay Control - Spore</title>
<style>
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
display: flex;
align-items: center;
justify-content: center;
color: white;
}
.container {
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 20px;
padding: 40px;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
text-align: center;
max-width: 400px;
width: 90%;
}
h1 {
margin-bottom: 30px;
font-size: 2.2em;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.relay-status {
margin-bottom: 30px;
}
.status-indicator {
width: 120px;
height: 120px;
border-radius: 50%;
margin: 0 auto 20px;
display: flex;
align-items: center;
justify-content: center;
font-size: 1.2em;
font-weight: bold;
transition: all 0.3s ease;
border: 4px solid rgba(255, 255, 255, 0.3);
}
.status-indicator.off {
background: rgba(255, 0, 0, 0.3);
color: #ff6b6b;
}
.status-indicator.on {
background: rgba(0, 255, 0, 0.3);
color: #51cf66;
box-shadow: 0 0 20px rgba(81, 207, 102, 0.5);
}
.status-text {
font-size: 1.5em;
margin-bottom: 10px;
}
.pin-info {
font-size: 0.9em;
opacity: 0.8;
}
.controls {
display: flex;
gap: 15px;
justify-content: center;
flex-wrap: wrap;
}
.btn {
padding: 12px 24px;
border: none;
border-radius: 25px;
font-size: 1em;
font-weight: bold;
cursor: pointer;
transition: all 0.3s ease;
min-width: 100px;
text-transform: uppercase;
letter-spacing: 1px;
}
.btn-primary {
background: rgba(255, 255, 255, 0.2);
color: white;
border: 2px solid rgba(255, 255, 255, 0.3);
}
.btn-primary:hover {
background: rgba(255, 255, 255, 0.3);
transform: translateY(-2px);
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.btn-primary:active {
transform: translateY(0);
}
.btn-success {
background: rgba(81, 207, 102, 0.8);
color: white;
border: 2px solid rgba(81, 207, 102, 1);
}
.btn-success:hover {
background: rgba(81, 207, 102, 1);
transform: translateY(-2px);
}
.btn-danger {
background: rgba(255, 107, 107, 0.8);
color: white;
border: 2px solid rgba(255, 107, 107, 1);
}
.btn-danger:hover {
background: rgba(255, 107, 107, 1);
transform: translateY(-2px);
}
.loading {
opacity: 0.6;
pointer-events: none;
}
.error {
color: #ff6b6b;
margin-top: 15px;
font-size: 0.9em;
}
.success {
color: #51cf66;
margin-top: 15px;
font-size: 0.9em;
}
.uptime {
margin-top: 20px;
font-size: 0.8em;
opacity: 0.7;
}
</style>
</head>
<body>
<div class="container">
<h1>🔌 Relay Control</h1>
<div class="relay-status">
<div class="status-indicator off" id="statusIndicator">
OFF
</div>
<div class="status-text" id="statusText">Relay is OFF</div>
<div class="pin-info" id="pinInfo">Pin: Loading...</div>
</div>
<div class="controls">
<button class="btn btn-success" id="turnOnBtn" onclick="controlRelay('on')">
Turn ON
</button>
<button class="btn btn-danger" id="turnOffBtn" onclick="controlRelay('off')">
Turn OFF
</button>
<button class="btn btn-primary" id="toggleBtn" onclick="controlRelay('toggle')">
Toggle
</button>
</div>
<div id="message"></div>
<div class="uptime" id="uptime"></div>
</div>
<script>
let currentState = 'off';
let relayPin = '';
// Load initial relay status
async function loadRelayStatus() {
try {
const response = await fetch('/api/relay/status');
if (!response.ok) {
throw new Error('Failed to fetch relay status');
}
const data = await response.json();
currentState = data.state;
relayPin = data.pin;
updateUI();
updateUptime(data.uptime);
} catch (error) {
console.error('Error loading relay status:', error);
showMessage('Error loading relay status: ' + error.message, 'error');
}
}
// Control relay
async function controlRelay(action) {
const buttons = document.querySelectorAll('.btn');
buttons.forEach(btn => btn.classList.add('loading'));
try {
const response = await fetch('/api/relay', {
method: 'POST',
headers: {
'Content-Type': 'application/x-www-form-urlencoded',
},
body: `state=${action}`
});
const data = await response.json();
if (data.success) {
currentState = data.state;
updateUI();
showMessage(`Relay turned ${data.state.toUpperCase()}`, 'success');
} else {
showMessage(data.message || 'Failed to control relay', 'error');
}
} catch (error) {
console.error('Error controlling relay:', error);
showMessage('Error controlling relay: ' + error.message, 'error');
} finally {
buttons.forEach(btn => btn.classList.remove('loading'));
}
}
// Update UI based on current state
function updateUI() {
const statusIndicator = document.getElementById('statusIndicator');
const statusText = document.getElementById('statusText');
const pinInfo = document.getElementById('pinInfo');
if (currentState === 'on') {
statusIndicator.className = 'status-indicator on';
statusIndicator.textContent = 'ON';
statusText.textContent = 'Relay is ON';
} else {
statusIndicator.className = 'status-indicator off';
statusIndicator.textContent = 'OFF';
statusText.textContent = 'Relay is OFF';
}
if (relayPin) {
pinInfo.textContent = `Pin: ${relayPin}`;
}
}
// Update uptime display
function updateUptime(uptime) {
const uptimeElement = document.getElementById('uptime');
if (uptime) {
const seconds = Math.floor(uptime / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
let uptimeText = `Uptime: ${seconds}s`;
if (hours > 0) {
uptimeText = `Uptime: ${hours}h ${minutes % 60}m ${seconds % 60}s`;
} else if (minutes > 0) {
uptimeText = `Uptime: ${minutes}m ${seconds % 60}s`;
}
uptimeElement.textContent = uptimeText;
}
}
// Show message to user
function showMessage(message, type) {
const messageElement = document.getElementById('message');
messageElement.textContent = message;
messageElement.className = type;
// Clear message after 3 seconds
setTimeout(() => {
messageElement.textContent = '';
messageElement.className = '';
}, 3000);
}
// Load status on page load
loadRelayStatus();
// Refresh status every 2 seconds
setInterval(loadRelayStatus, 2000);
</script>
</body>
</html>

View File

@@ -0,0 +1,177 @@
// Only initialize if not already done
if (!window.relayControlInitialized) {
class RelayControl {
constructor() {
this.currentState = 'off';
this.relayPin = '';
this.init();
}
init() {
this.createComponent();
this.loadRelayStatus();
this.setupEventListeners();
// Refresh status every 2 seconds
setInterval(() => this.loadRelayStatus(), 2000);
}
createComponent() {
// Create the main container
const container = document.createElement('div');
container.className = 'relay-component';
container.innerHTML = `
<h1>🔌 Relay Control</h1>
<div class="relay-status">
<div class="status-indicator off" id="statusIndicator">
OFF
</div>
<div class="status-text" id="statusText">Relay is OFF</div>
<div class="pin-info" id="pinInfo">Pin: Loading...</div>
</div>
<div class="controls">
<button class="btn btn-success" id="turnOnBtn">
Turn ON
</button>
<button class="btn btn-danger" id="turnOffBtn">
Turn OFF
</button>
<button class="btn btn-primary" id="toggleBtn">
Toggle
</button>
</div>
<div id="message"></div>
<div class="uptime" id="uptime"></div>
`;
// Append to component div
const componentDiv = document.getElementById('component');
if (componentDiv) {
componentDiv.appendChild(container);
} else {
// Fallback to body if component div not found
document.body.appendChild(container);
}
}
setupEventListeners() {
document.getElementById('turnOnBtn').addEventListener('click', () => this.controlRelay('on'));
document.getElementById('turnOffBtn').addEventListener('click', () => this.controlRelay('off'));
document.getElementById('toggleBtn').addEventListener('click', () => this.controlRelay('toggle'));
}
// Load initial relay status
async loadRelayStatus() {
try {
const response = await fetch('/api/relay/status');
if (!response.ok) {
throw new Error('Failed to fetch relay status');
}
const data = await response.json();
this.currentState = data.state;
this.relayPin = data.pin;
this.updateUI();
this.updateUptime(data.uptime);
} catch (error) {
console.error('Error loading relay status:', error);
this.showMessage('Error loading relay status: ' + error.message, 'error');
}
}
// Control relay
async controlRelay(action) {
const buttons = document.querySelectorAll('.btn');
buttons.forEach(btn => btn.classList.add('loading'));
try {
const response = await fetch('/api/relay', {
method: 'POST',
headers: {
'Content-Type': 'application/x-www-form-urlencoded',
},
body: `state=${action}`
});
const data = await response.json();
if (data.success) {
this.currentState = data.state;
this.updateUI();
this.showMessage(`Relay turned ${data.state.toUpperCase()}`, 'success');
} else {
this.showMessage(data.message || 'Failed to control relay', 'error');
}
} catch (error) {
console.error('Error controlling relay:', error);
this.showMessage('Error controlling relay: ' + error.message, 'error');
} finally {
buttons.forEach(btn => btn.classList.remove('loading'));
}
}
// Update UI based on current state
updateUI() {
const statusIndicator = document.getElementById('statusIndicator');
const statusText = document.getElementById('statusText');
const pinInfo = document.getElementById('pinInfo');
if (this.currentState === 'on') {
statusIndicator.className = 'status-indicator on';
statusIndicator.textContent = 'ON';
statusText.textContent = 'Relay is ON';
} else {
statusIndicator.className = 'status-indicator off';
statusIndicator.textContent = 'OFF';
statusText.textContent = 'Relay is OFF';
}
if (this.relayPin) {
pinInfo.textContent = `Pin: ${this.relayPin}`;
}
}
// Update uptime display
updateUptime(uptime) {
const uptimeElement = document.getElementById('uptime');
if (uptime) {
const seconds = Math.floor(uptime / 1000);
const minutes = Math.floor(seconds / 60);
const hours = Math.floor(minutes / 60);
let uptimeText = `Uptime: ${seconds}s`;
if (hours > 0) {
uptimeText = `Uptime: ${hours}h ${minutes % 60}m ${seconds % 60}s`;
} else if (minutes > 0) {
uptimeText = `Uptime: ${minutes}m ${seconds % 60}s`;
}
uptimeElement.textContent = uptimeText;
}
}
// Show message to user
showMessage(message, type) {
const messageElement = document.getElementById('message');
messageElement.textContent = message;
messageElement.className = type;
// Clear message after 3 seconds
setTimeout(() => {
messageElement.textContent = '';
messageElement.className = '';
}, 3000);
}
}
// Initialize the relay control when the page loads
document.addEventListener('DOMContentLoaded', () => {
new RelayControl();
});
window.relayControlInitialized = true;
}

View File

@@ -0,0 +1,141 @@
.relay-component {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
background: rgba(255, 255, 255, 0.1);
backdrop-filter: blur(10px);
border-radius: 20px;
padding: 40px;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.3);
text-align: center;
max-width: 400px;
width: 100%;
color: white;
box-sizing: border-box;
}
.relay-component h1 {
margin: 0 0 30px 0;
font-size: 2.2em;
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
}
.relay-component .relay-status {
margin-bottom: 30px;
}
.relay-component .status-indicator {
width: 120px;
height: 120px;
border-radius: 50%;
margin: 0 auto 20px;
display: flex;
align-items: center;
justify-content: center;
font-size: 1.2em;
font-weight: bold;
transition: all 0.3s ease;
border: 4px solid rgba(255, 255, 255, 0.3);
}
.relay-component .status-indicator.off {
background: rgba(255, 0, 0, 0.3);
color: #ff6b6b;
}
.relay-component .status-indicator.on {
background: rgba(0, 255, 0, 0.3);
color: #51cf66;
box-shadow: 0 0 20px rgba(81, 207, 102, 0.5);
}
.relay-component .status-text {
font-size: 1.5em;
margin-bottom: 10px;
}
.relay-component .pin-info {
font-size: 0.9em;
opacity: 0.8;
}
.relay-component .controls {
display: flex;
gap: 15px;
justify-content: center;
flex-wrap: wrap;
}
.relay-component .btn {
padding: 12px 24px;
border: none;
border-radius: 25px;
font-size: 1em;
font-weight: bold;
cursor: pointer;
transition: all 0.3s ease;
min-width: 100px;
text-transform: uppercase;
letter-spacing: 1px;
}
.relay-component .btn-primary {
background: rgba(255, 255, 255, 0.2);
color: #333;
border: 2px solid rgba(0, 0, 0, 0.8);
font-weight: bold;
}
.relay-component .btn-primary:hover {
background: rgba(255, 255, 255, 0.4);
color: #222;
transform: translateY(-2px);
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.relay-component .btn-primary:active {
transform: translateY(0);
}
.relay-component .btn-success {
background: rgba(81, 207, 102, 0.8);
color: white;
border: 2px solid rgba(81, 207, 102, 1);
}
.relay-component .btn-success:hover {
background: rgba(81, 207, 102, 1);
transform: translateY(-2px);
}
.relay-component .btn-danger {
background: rgba(255, 107, 107, 0.8);
color: white;
border: 2px solid rgba(255, 107, 107, 1);
}
.relay-component .btn-danger:hover {
background: rgba(255, 107, 107, 1);
transform: translateY(-2px);
}
.relay-component .loading {
opacity: 0.6;
pointer-events: none;
}
.relay-component .error {
color: #ff6b6b;
margin-top: 15px;
font-size: 0.9em;
}
.relay-component .success {
color: #51cf66;
margin-top: 15px;
font-size: 0.9em;
}
.relay-component .uptime {
margin-top: 20px;
font-size: 0.8em;
opacity: 0.7;
}

38
examples/relay/main.cpp Normal file
View File

@@ -0,0 +1,38 @@
#include <Arduino.h>
#include "spore/Spore.h"
#include "RelayService.h"
// Choose a default relay pin. For ESP-01 this is GPIO0. Adjust as needed for your board.
#ifndef RELAY_PIN
#define RELAY_PIN 0
#endif
// Create Spore instance with custom labels
Spore spore({
{"app", "relay"},
{"device", "actuator"},
{"pin", String(RELAY_PIN)}
});
// Create custom service
RelayService* relayService = nullptr;
void setup() {
// Initialize the Spore framework
spore.setup();
// Create and add custom service
relayService = new RelayService(spore.getContext(), spore.getTaskManager(), RELAY_PIN);
spore.addService(relayService);
// Start the API server and complete initialization
spore.begin();
LOG_INFO("Main", "Relay service registered and ready!");
LOG_INFO("Main", "Web interface available at http://<node-ip>/relay.html");
}
void loop() {
// Run the Spore framework loop
spore.loop();
}

9
include/spore/Service.h Normal file
View File

@@ -0,0 +1,9 @@
#pragma once
#include "spore/core/ApiServer.h"
class Service {
public:
virtual ~Service() = default;
virtual void registerEndpoints(ApiServer& api) = 0;
virtual const char* getName() const = 0;
};

59
include/spore/Spore.h Normal file
View File

@@ -0,0 +1,59 @@
#pragma once
#include <vector>
#include <memory>
#include <initializer_list>
#include <utility>
#include "core/NodeContext.h"
#include "core/NetworkManager.h"
#include "core/ClusterManager.h"
#include "core/ApiServer.h"
#include "core/TaskManager.h"
#include "Service.h"
#include "util/Logging.h"
#include "util/CpuUsage.h"
class Spore {
public:
Spore();
Spore(std::initializer_list<std::pair<String, String>> initialLabels);
~Spore();
// Core lifecycle methods
void setup();
void begin();
void loop();
// Service management
void addService(std::shared_ptr<Service> service);
void addService(Service* service);
// Access to core components
NodeContext& getContext() { return ctx; }
NetworkManager& getNetwork() { return network; }
TaskManager& getTaskManager() { return taskManager; }
ClusterManager& getCluster() { return cluster; }
ApiServer& getApiServer() { return apiServer; }
// CPU usage monitoring
CpuUsage& getCpuUsage() { return cpuUsage; }
float getCurrentCpuUsage() const { return cpuUsage.getCpuUsage(); }
float getAverageCpuUsage() const { return cpuUsage.getAverageCpuUsage(); }
private:
void initializeCore();
void registerCoreServices();
void startApiServer();
NodeContext ctx;
NetworkManager network;
TaskManager taskManager;
ClusterManager cluster;
ApiServer apiServer;
CpuUsage cpuUsage;
std::vector<std::shared_ptr<Service>> services;
bool initialized;
bool apiServerStarted;
};

View File

@@ -0,0 +1,54 @@
#pragma once
#include <Arduino.h>
#include <ArduinoJson.h>
#include <ESPAsyncWebServer.h>
#include <Updater.h>
#include <functional>
#include <vector>
#include <tuple>
#include "spore/core/NodeContext.h"
#include "spore/types/NodeInfo.h"
#include "spore/core/TaskManager.h"
#include "spore/types/ApiTypes.h"
#include "spore/util/Logging.h"
class Service; // Forward declaration
class ApiServer {
public:
ApiServer(NodeContext& ctx, TaskManager& taskMgr, uint16_t port = 80);
void begin();
void addService(Service& service);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const String& serviceName = "unknown");
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const String& serviceName = "unknown");
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const std::vector<ParamSpec>& params, const String& serviceName = "unknown");
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const std::vector<ParamSpec>& params, const String& serviceName = "unknown");
// Static file serving
void serveStatic(const String& uri, fs::FS& fs, const String& path, const String& cache_header = "");
static const char* methodToStr(int method);
// Access to endpoints for endpoints endpoint
const std::vector<EndpointInfo>& getEndpoints() const { return endpoints; }
private:
AsyncWebServer server;
NodeContext& ctx;
TaskManager& taskManager;
std::vector<std::reference_wrapper<Service>> services;
std::vector<EndpointInfo> endpoints; // Single source of truth for endpoints
// Internal helpers
void registerEndpoint(const String& uri, int method,
const std::vector<ParamSpec>& params,
const String& serviceName);
};

View File

@@ -1,7 +1,7 @@
#pragma once
#include "Globals.h"
#include "NodeContext.h"
#include "NodeInfo.h"
#include "spore/core/NodeContext.h"
#include "spore/types/NodeInfo.h"
#include "spore/core/TaskManager.h"
#include <Arduino.h>
#include <ESP8266WiFi.h>
#include <ArduinoJson.h>
@@ -10,7 +10,8 @@
class ClusterManager {
public:
ClusterManager(NodeContext& ctx);
ClusterManager(NodeContext& ctx, TaskManager& taskMgr);
void registerTasks();
void sendDiscovery();
void listenForDiscovery();
void addOrUpdateNode(const String& nodeHost, IPAddress nodeIP);
@@ -24,4 +25,5 @@ public:
void updateAllMembersInfoTaskCallback();
private:
NodeContext& ctx;
TaskManager& taskManager;
};

View File

@@ -0,0 +1,49 @@
#pragma once
#include "spore/core/NodeContext.h"
#include <ESP8266WiFi.h>
#include <vector>
struct AccessPoint {
String ssid;
int32_t rssi;
uint8_t encryptionType;
uint8_t* bssid;
int32_t channel;
bool isHidden;
};
class NetworkManager {
public:
NetworkManager(NodeContext& ctx);
void setupWiFi();
void setHostnameFromMac();
// WiFi scanning methods
void scanWifi();
void processAccessPoints();
std::vector<AccessPoint> getAccessPoints() const;
// WiFi configuration methods
void setWiFiConfig(const String& ssid, const String& password,
uint32_t connect_timeout_ms = 10000,
uint32_t retry_delay_ms = 500);
// Network status methods
bool isConnected() const { return WiFi.isConnected(); }
String getSSID() const { return WiFi.SSID(); }
IPAddress getLocalIP() const { return WiFi.localIP(); }
String getMacAddress() const { return WiFi.macAddress(); }
String getHostname() const { return WiFi.hostname(); }
int32_t getRSSI() const { return WiFi.RSSI(); }
WiFiMode_t getMode() const { return WiFi.getMode(); }
// AP mode specific methods
IPAddress getAPIP() const { return WiFi.softAPIP(); }
String getAPMacAddress() const { return WiFi.softAPmacAddress(); }
uint8_t getConnectedStations() const { return WiFi.softAPgetStationNum(); }
private:
NodeContext& ctx;
std::vector<AccessPoint> accessPoints;
bool isScanning = false;
};

View File

@@ -1,20 +1,23 @@
#pragma once
#include <TaskSchedulerDeclarations.h>
#include <WiFiUdp.h>
#include <map>
#include "NodeInfo.h"
#include "spore/types/NodeInfo.h"
#include <functional>
#include <string>
#include "Config.h"
#include <initializer_list>
#include "spore/types/Config.h"
#include "spore/types/ApiTypes.h"
class NodeContext {
public:
NodeContext();
NodeContext(std::initializer_list<std::pair<String, String>> initialLabels);
~NodeContext();
Scheduler* scheduler;
WiFiUDP* udp;
String hostname;
IPAddress localIP;
NodeInfo self;
std::map<String, NodeInfo>* memberList;
Config config;

View File

@@ -0,0 +1,63 @@
#pragma once
#include <vector>
#include <functional>
#include <string>
#include <map>
#include "spore/core/NodeContext.h"
#include <ArduinoJson.h>
// Define our own callback type to avoid conflict with TaskScheduler
using TaskFunction = std::function<void()>;
struct TaskDefinition {
std::string name;
unsigned long interval;
TaskFunction callback;
bool enabled;
bool autoStart;
TaskDefinition(const std::string& n, unsigned long intv, TaskFunction cb, bool en = true, bool autoS = true)
: name(n), interval(intv), callback(cb), enabled(en), autoStart(autoS) {}
};
class TaskManager {
public:
TaskManager(NodeContext& ctx);
~TaskManager();
// Task registration methods
void registerTask(const std::string& name, unsigned long interval, TaskFunction callback, bool enabled = true, bool autoStart = true);
void registerTask(const TaskDefinition& taskDef);
// Task control methods
void enableTask(const std::string& name);
void disableTask(const std::string& name);
void setTaskInterval(const std::string& name, unsigned long interval);
void startTask(const std::string& name);
void stopTask(const std::string& name);
// Task status methods
bool isTaskEnabled(const std::string& name) const;
bool isTaskRunning(const std::string& name) const;
unsigned long getTaskInterval(const std::string& name) const;
// Get comprehensive task status information
std::vector<std::pair<std::string, JsonObject>> getAllTaskStatuses(JsonDocument& doc) const;
// Management methods
void initialize();
void enableAllTasks();
void disableAllTasks();
void printTaskStatus() const;
// Task execution
void execute();
private:
NodeContext& ctx;
std::vector<TaskDefinition> taskDefinitions;
std::vector<unsigned long> lastExecutionTimes;
int findTaskIndex(const std::string& name) const;
};

View File

@@ -0,0 +1,16 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/NodeContext.h"
#include <ArduinoJson.h>
class ClusterService : public Service {
public:
ClusterService(NodeContext& ctx);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Cluster"; }
private:
NodeContext& ctx;
void handleMembersRequest(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,51 @@
#pragma once
#include "spore/Service.h"
#include "spore/util/CpuUsage.h"
#include <functional>
class MonitoringService : public Service {
public:
MonitoringService(CpuUsage& cpuUsage);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Monitoring"; }
// System resource information
struct SystemResources {
// CPU information
float currentCpuUsage;
float averageCpuUsage;
float maxCpuUsage;
float minCpuUsage;
unsigned long measurementCount;
bool isMeasuring;
// Memory information
size_t freeHeap;
size_t totalHeap;
size_t minFreeHeap;
size_t maxAllocHeap;
size_t heapFragmentation;
// Filesystem information
size_t totalBytes;
size_t usedBytes;
size_t freeBytes;
float usagePercent;
// System uptime
unsigned long uptimeMs;
unsigned long uptimeSeconds;
};
// Get current system resources
SystemResources getSystemResources() const;
private:
void handleResourcesRequest(AsyncWebServerRequest* request);
// Helper methods
size_t calculateHeapFragmentation() const;
void getFilesystemInfo(size_t& totalBytes, size_t& usedBytes) const;
CpuUsage& cpuUsage;
};

View File

@@ -0,0 +1,22 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/NetworkManager.h"
#include "spore/core/NodeContext.h"
class NetworkService : public Service {
public:
NetworkService(NetworkManager& networkManager);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Network"; }
private:
NetworkManager& networkManager;
// WiFi scanning endpoints
void handleWifiScanRequest(AsyncWebServerRequest* request);
void handleGetWifiNetworks(AsyncWebServerRequest* request);
// Network status endpoints
void handleNetworkStatus(AsyncWebServerRequest* request);
void handleSetWifiConfig(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,22 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/NodeContext.h"
#include <ArduinoJson.h>
#include <Updater.h>
class NodeService : public Service {
public:
NodeService(NodeContext& ctx, ApiServer& apiServer);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Node"; }
private:
NodeContext& ctx;
ApiServer& apiServer;
void handleStatusRequest(AsyncWebServerRequest* request);
void handleUpdateRequest(AsyncWebServerRequest* request);
void handleUpdateUpload(AsyncWebServerRequest* request, const String& filename, size_t index, uint8_t* data, size_t len, bool final);
void handleRestartRequest(AsyncWebServerRequest* request);
void handleEndpointsRequest(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,18 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/ApiServer.h"
#include "spore/core/NodeContext.h"
#include <FS.h>
#include <LittleFS.h>
class StaticFileService : public Service {
public:
StaticFileService(NodeContext& ctx, ApiServer& apiServer);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return name.c_str(); }
private:
static const String name;
NodeContext& ctx;
ApiServer& apiServer;
};

View File

@@ -0,0 +1,17 @@
#pragma once
#include "spore/Service.h"
#include "spore/core/TaskManager.h"
#include <ArduinoJson.h>
class TaskService : public Service {
public:
TaskService(TaskManager& taskManager);
void registerEndpoints(ApiServer& api) override;
const char* getName() const override { return "Task"; }
private:
TaskManager& taskManager;
void handleStatusRequest(AsyncWebServerRequest* request);
void handleControlRequest(AsyncWebServerRequest* request);
};

View File

@@ -0,0 +1,114 @@
#pragma once
#include "spore/util/JsonSerializable.h"
#include "spore/util/Logging.h"
#include <ArduinoJson.h>
namespace spore {
namespace types {
/**
* Base class for API responses that can be serialized to JSON
* Handles complete JsonDocument creation and serialization
*/
class ApiResponse {
protected:
mutable JsonDocument doc;
public:
virtual ~ApiResponse() = default;
/**
* Get the complete JSON string representation of this response
* @return JSON string ready to send as HTTP response
*/
virtual String toJsonString() const {
String json;
serializeJson(doc, json);
return json;
}
/**
* Get the JsonDocument for direct manipulation if needed
* @return Reference to the internal JsonDocument
*/
JsonDocument& getDocument() { return doc; }
const JsonDocument& getDocument() const { return doc; }
/**
* Clear the document and reset for reuse
*/
virtual void clear() {
doc.clear();
}
};
/**
* Base class for API responses that contain a collection of serializable items
*/
template<typename ItemType>
class CollectionResponse : public ApiResponse {
protected:
String collectionKey;
public:
explicit CollectionResponse(const String& key) : collectionKey(key) {}
/**
* Add a serializable item to the collection
* @param item The serializable item to add
*/
void addItem(const util::JsonSerializable& item) {
// Ensure the array exists and get a reference to it
if (!doc[collectionKey].is<JsonArray>()) {
doc[collectionKey] = JsonArray();
}
JsonArray arr = doc[collectionKey].as<JsonArray>();
JsonObject obj = arr.add<JsonObject>();
item.toJson(obj);
}
/**
* Add a serializable item to the collection (move version)
* @param item The serializable item to add
*/
void addItem(util::JsonSerializable&& item) {
// Ensure the array exists and get a reference to it
if (!doc[collectionKey].is<JsonArray>()) {
doc[collectionKey] = JsonArray();
}
JsonArray arr = doc[collectionKey].as<JsonArray>();
JsonObject obj = arr.add<JsonObject>();
item.toJson(obj);
}
/**
* Add multiple items from a container
* @param items Container of serializable items
*/
template<typename Container>
void addItems(const Container& items) {
// Ensure the array exists and get a reference to it
if (!doc[collectionKey].is<JsonArray>()) {
doc[collectionKey] = JsonArray();
}
JsonArray arr = doc[collectionKey].as<JsonArray>();
for (const auto& item : items) {
JsonObject obj = arr.add<JsonObject>();
item.toJson(obj);
}
}
/**
* Get the current number of items in the collection
* @return Number of items
*/
size_t getItemCount() const {
if (doc[collectionKey].is<JsonArray>()) {
return doc[collectionKey].as<JsonArray>().size();
}
return 0;
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,37 @@
#pragma once
#include <Arduino.h>
#include <vector>
struct ParamSpec {
String name;
bool required;
String location; // "query" | "body" | "path" | "header"
String type; // e.g. "string", "number", "boolean"
std::vector<String> values; // optional allowed values
String defaultValue; // optional default value (stringified)
};
struct EndpointCapability {
String uri;
int method;
std::vector<ParamSpec> params;
};
struct EndpointInfo {
String uri;
int method;
std::vector<ParamSpec> params;
String serviceName; // Name of the service that registered this endpoint
bool isLocal; // Whether this endpoint is on the local node
// Constructor for individual parameters
EndpointInfo(const String& u, int m, const std::vector<ParamSpec>& p, const String& service, bool local)
: uri(u), method(m), params(p), serviceName(service), isLocal(local) {}
// Constructor for easy conversion from EndpointCapability
EndpointInfo(const EndpointCapability& cap, const String& service = "", bool local = true)
: uri(cap.uri), method(cap.method), params(cap.params), serviceName(service), isLocal(local) {}
// Default constructor
EndpointInfo() : isLocal(true) {}
};

View File

@@ -0,0 +1,47 @@
#pragma once
#include "ApiResponse.h"
#include "NodeInfoSerializable.h"
#include <map>
namespace spore {
namespace types {
/**
* Response class for cluster members endpoint
* Handles complete JSON document creation for cluster member data
*/
class ClusterMembersResponse : public CollectionResponse<NodeInfoSerializable> {
public:
ClusterMembersResponse() : CollectionResponse("members") {}
/**
* Add a single node to the response
* @param node The NodeInfo to add
*/
void addNode(const NodeInfo& node) {
addItem(NodeInfoSerializable(const_cast<NodeInfo&>(node)));
}
/**
* Add multiple nodes from a member list
* @param memberList Map of hostname to NodeInfo
*/
void addNodes(const std::map<String, NodeInfo>& memberList) {
for (const auto& pair : memberList) {
addNode(pair.second);
}
}
/**
* Add nodes from a pointer to member list
* @param memberList Pointer to map of hostname to NodeInfo
*/
void addNodes(const std::map<String, NodeInfo>* memberList) {
if (memberList) {
addNodes(*memberList);
}
}
};
} // namespace types
} // namespace spore

View File

@@ -32,6 +32,11 @@ public:
unsigned long restart_delay_ms;
uint16_t json_doc_size;
// Memory Management
uint32_t low_memory_threshold_bytes;
uint32_t critical_memory_threshold_bytes;
size_t max_concurrent_http_requests;
// Constructor
Config();
};

View File

@@ -0,0 +1,76 @@
#pragma once
#include "ApiTypes.h"
#include "spore/util/JsonSerializable.h"
#include <ArduinoJson.h>
namespace spore {
namespace types {
/**
* Serializable wrapper for EndpointInfo that implements JsonSerializable interface
* Handles conversion between EndpointInfo struct and JSON representation
*/
class EndpointInfoSerializable : public util::JsonSerializable {
private:
const EndpointInfo& endpoint;
public:
explicit EndpointInfoSerializable(const EndpointInfo& ep) : endpoint(ep) {}
/**
* Serialize EndpointInfo to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["uri"] = endpoint.uri;
obj["method"] = endpoint.method;
// Add parameters if present
if (!endpoint.params.empty()) {
JsonArray paramsArr = obj["params"].to<JsonArray>();
for (const auto& param : endpoint.params) {
JsonObject paramObj = paramsArr.add<JsonObject>();
paramObj["name"] = param.name;
paramObj["location"] = param.location;
paramObj["required"] = param.required;
paramObj["type"] = param.type;
if (!param.values.empty()) {
JsonArray valuesArr = paramObj["values"].to<JsonArray>();
for (const auto& value : param.values) {
valuesArr.add(value);
}
}
if (param.defaultValue.length() > 0) {
paramObj["default"] = param.defaultValue;
}
}
}
}
/**
* Deserialize EndpointInfo from JsonObject
*/
void fromJson(const JsonObject& obj) override {
// Note: This would require modifying the EndpointInfo struct to be mutable
// For now, this is a placeholder as EndpointInfo is typically read-only
// in the context where this serialization is used
}
};
/**
* Convenience function to create a JsonArray from a collection of EndpointInfo objects
*/
template<typename Container>
JsonArray endpointInfoToJsonArray(JsonDocument& doc, const Container& endpoints) {
JsonArray arr = doc.to<JsonArray>();
for (const auto& endpoint : endpoints) {
EndpointInfoSerializable serializable(endpoint);
JsonObject obj = arr.add<JsonObject>();
serializable.toJson(obj);
}
return arr;
}
} // namespace types
} // namespace spore

View File

@@ -1,8 +1,9 @@
#pragma once
#include "Globals.h"
#include <IPAddress.h>
#include <vector>
#include <tuple>
#include <map>
#include "ApiTypes.h"
struct NodeInfo {
String hostname;
@@ -17,7 +18,8 @@ struct NodeInfo {
uint32_t flashChipSize = 0;
} resources;
unsigned long latency = 0; // ms since lastSeen
std::vector<std::tuple<String, int>> apiEndpoints; // List of registered endpoints
std::vector<EndpointInfo> endpoints; // List of registered endpoints
std::map<String, String> labels; // Arbitrary node labels (key -> value)
};
const char* statusToStr(NodeInfo::Status status);

View File

@@ -0,0 +1,141 @@
#pragma once
#include "NodeInfo.h"
#include "ApiTypes.h"
#include "spore/util/JsonSerializable.h"
#include <ArduinoJson.h>
namespace spore {
namespace types {
/**
* Serializable wrapper for NodeInfo that implements JsonSerializable interface
* Handles conversion between NodeInfo struct and JSON representation
*/
class NodeInfoSerializable : public util::JsonSerializable {
private:
NodeInfo& nodeInfo;
public:
explicit NodeInfoSerializable(NodeInfo& node) : nodeInfo(node) {}
/**
* Serialize NodeInfo to JsonObject
* Maps all NodeInfo fields to appropriate JSON structure
*/
void toJson(JsonObject& obj) const override {
obj["hostname"] = nodeInfo.hostname;
obj["ip"] = nodeInfo.ip.toString();
obj["lastSeen"] = nodeInfo.lastSeen;
obj["latency"] = nodeInfo.latency;
obj["status"] = statusToStr(nodeInfo.status);
// Serialize resources
JsonObject resources = obj["resources"].to<JsonObject>();
resources["freeHeap"] = nodeInfo.resources.freeHeap;
resources["chipId"] = nodeInfo.resources.chipId;
resources["sdkVersion"] = nodeInfo.resources.sdkVersion;
resources["cpuFreqMHz"] = nodeInfo.resources.cpuFreqMHz;
resources["flashChipSize"] = nodeInfo.resources.flashChipSize;
// Serialize labels if present
if (!nodeInfo.labels.empty()) {
JsonObject labels = obj["labels"].to<JsonObject>();
for (const auto& kv : nodeInfo.labels) {
labels[kv.first.c_str()] = kv.second;
}
}
// Serialize endpoints if present
if (!nodeInfo.endpoints.empty()) {
JsonArray endpoints = obj["api"].to<JsonArray>();
for (const auto& endpoint : nodeInfo.endpoints) {
JsonObject endpointObj = endpoints.add<JsonObject>();
endpointObj["uri"] = endpoint.uri;
endpointObj["method"] = endpoint.method;
}
}
}
/**
* Deserialize NodeInfo from JsonObject
* Populates NodeInfo fields from JSON structure
*/
void fromJson(const JsonObject& obj) override {
nodeInfo.hostname = obj["hostname"].as<String>();
// Parse IP address
const char* ipStr = obj["ip"];
if (ipStr) {
nodeInfo.ip.fromString(ipStr);
}
nodeInfo.lastSeen = obj["lastSeen"].as<unsigned long>();
nodeInfo.latency = obj["latency"].as<unsigned long>();
// Parse status
const char* statusStr = obj["status"];
if (statusStr) {
if (strcmp(statusStr, "ACTIVE") == 0) {
nodeInfo.status = NodeInfo::ACTIVE;
} else if (strcmp(statusStr, "INACTIVE") == 0) {
nodeInfo.status = NodeInfo::INACTIVE;
} else if (strcmp(statusStr, "DEAD") == 0) {
nodeInfo.status = NodeInfo::DEAD;
}
}
// Parse resources
if (obj["resources"].is<JsonObject>()) {
JsonObject resources = obj["resources"].as<JsonObject>();
nodeInfo.resources.freeHeap = resources["freeHeap"].as<uint32_t>();
nodeInfo.resources.chipId = resources["chipId"].as<uint32_t>();
nodeInfo.resources.sdkVersion = resources["sdkVersion"].as<String>();
nodeInfo.resources.cpuFreqMHz = resources["cpuFreqMHz"].as<uint32_t>();
nodeInfo.resources.flashChipSize = resources["flashChipSize"].as<uint32_t>();
}
// Parse labels
nodeInfo.labels.clear();
if (obj["labels"].is<JsonObject>()) {
JsonObject labels = obj["labels"].as<JsonObject>();
for (JsonPair kvp : labels) {
nodeInfo.labels[kvp.key().c_str()] = kvp.value().as<String>();
}
}
// Parse endpoints
nodeInfo.endpoints.clear();
if (obj["api"].is<JsonArray>()) {
JsonArray endpoints = obj["api"].as<JsonArray>();
for (JsonObject endpointObj : endpoints) {
EndpointInfo endpoint;
endpoint.uri = endpointObj["uri"].as<String>();
endpoint.method = endpointObj["method"].as<int>();
endpoint.isLocal = false;
endpoint.serviceName = "remote";
nodeInfo.endpoints.push_back(std::move(endpoint));
}
}
}
};
/**
* Convenience function to create a JsonArray from a collection of NodeInfo objects
* @param doc The JsonDocument to create the array in
* @param nodes Collection of NodeInfo objects
* @return A JsonArray containing all serialized NodeInfo objects
*/
template<typename Container>
JsonArray nodeInfoToJsonArray(JsonDocument& doc, const Container& nodes) {
JsonArray arr = doc.to<JsonArray>();
for (const auto& pair : nodes) {
const NodeInfo& node = pair.second;
NodeInfoSerializable serializable(const_cast<NodeInfo&>(node));
JsonObject obj = arr.add<JsonObject>();
serializable.toJson(obj);
}
return arr;
}
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,102 @@
#pragma once
#include "ApiResponse.h"
#include "EndpointInfoSerializable.h"
#include "NodeInfo.h"
#include "spore/util/Logging.h"
#include <vector>
namespace spore {
namespace types {
/**
* Response class for node status endpoint
* Handles complete JSON document creation for node status data
*/
class NodeStatusResponse : public ApiResponse {
public:
/**
* Set basic system information
*/
void setSystemInfo() {
doc["freeHeap"] = ESP.getFreeHeap();
doc["chipId"] = ESP.getChipId();
doc["sdkVersion"] = ESP.getSdkVersion();
doc["cpuFreqMHz"] = ESP.getCpuFreqMHz();
doc["flashChipSize"] = ESP.getFlashChipSize();
}
/**
* Add labels to the response
* @param labels Map of label key-value pairs
*/
void addLabels(const std::map<String, String>& labels) {
if (!labels.empty()) {
JsonObject labelsObj = doc["labels"].to<JsonObject>();
for (const auto& kv : labels) {
labelsObj[kv.first.c_str()] = kv.second;
}
}
}
/**
* Build complete response with system info and labels
* @param labels Optional labels to include
*/
void buildCompleteResponse(const std::map<String, String>& labels = {}) {
setSystemInfo();
addLabels(labels);
}
};
/**
* Response class for node endpoints endpoint
* Handles complete JSON document creation for endpoint data
*/
class NodeEndpointsResponse : public CollectionResponse<EndpointInfoSerializable> {
public:
NodeEndpointsResponse() : CollectionResponse("endpoints") {}
/**
* Add a single endpoint to the response
* @param endpoint The EndpointInfo to add
*/
void addEndpoint(const EndpointInfo& endpoint) {
addItem(EndpointInfoSerializable(endpoint));
}
/**
* Add multiple endpoints from a container
* @param endpoints Container of EndpointInfo objects
*/
void addEndpoints(const std::vector<EndpointInfo>& endpoints) {
for (const auto& endpoint : endpoints) {
addEndpoint(endpoint);
}
}
};
/**
* Response class for simple status operations (update, restart)
* Handles simple JSON responses for node operations
*/
class NodeOperationResponse : public ApiResponse {
public:
/**
* Set success response
* @param status Status message
*/
void setSuccess(const String& status) {
doc["status"] = status;
}
/**
* Set error response
* @param status Error status message
*/
void setError(const String& status) {
doc["status"] = status;
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,99 @@
#pragma once
#include "spore/util/JsonSerializable.h"
#include <ArduinoJson.h>
#include <Arduino.h>
namespace spore {
namespace types {
/**
* Serializable wrapper for task information that implements JsonSerializable interface
* Handles conversion between task data and JSON representation
*/
class TaskInfoSerializable : public util::JsonSerializable {
private:
String taskName;
const JsonObject& taskData;
public:
TaskInfoSerializable(const String& name, const JsonObject& data)
: taskName(name), taskData(data) {}
TaskInfoSerializable(const std::string& name, const JsonObject& data)
: taskName(name.c_str()), taskData(data) {}
/**
* Serialize task info to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["name"] = taskName;
obj["interval"] = taskData["interval"];
obj["enabled"] = taskData["enabled"];
obj["running"] = taskData["running"];
obj["autoStart"] = taskData["autoStart"];
}
/**
* Deserialize task info from JsonObject
* Note: This is read-only for task status, so fromJson is not implemented
*/
void fromJson(const JsonObject& obj) override {
// Task info is typically read-only in this context
// Implementation would go here if needed
}
};
/**
* Serializable wrapper for system information
*/
class SystemInfoSerializable : public util::JsonSerializable {
public:
/**
* Serialize system info to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["freeHeap"] = ESP.getFreeHeap();
obj["uptime"] = millis();
}
/**
* Deserialize system info from JsonObject
* Note: System info is typically read-only, so fromJson is not implemented
*/
void fromJson(const JsonObject& obj) override {
// System info is typically read-only
// Implementation would go here if needed
}
};
/**
* Serializable wrapper for task summary information
*/
class TaskSummarySerializable : public util::JsonSerializable {
private:
size_t totalTasks;
size_t activeTasks;
public:
TaskSummarySerializable(size_t total, size_t active)
: totalTasks(total), activeTasks(active) {}
/**
* Serialize task summary to JsonObject
*/
void toJson(JsonObject& obj) const override {
obj["totalTasks"] = totalTasks;
obj["activeTasks"] = activeTasks;
}
/**
* Deserialize task summary from JsonObject
*/
void fromJson(const JsonObject& obj) override {
totalTasks = obj["totalTasks"].as<size_t>();
activeTasks = obj["activeTasks"].as<size_t>();
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,194 @@
#pragma once
#include "ApiResponse.h"
#include "TaskInfoSerializable.h"
#include <map>
namespace spore {
namespace types {
/**
* Response class for task status endpoint
* Handles complete JSON document creation for task status data
*/
class TaskStatusResponse : public ApiResponse {
public:
/**
* Set the task summary information
* @param totalTasks Total number of tasks
* @param activeTasks Number of active tasks
*/
void setSummary(size_t totalTasks, size_t activeTasks) {
TaskSummarySerializable summary(totalTasks, activeTasks);
JsonObject summaryObj = doc["summary"].to<JsonObject>();
summary.toJson(summaryObj);
}
/**
* Add a single task to the response
* @param taskName Name of the task
* @param taskData Task data as JsonObject
*/
void addTask(const String& taskName, const JsonObject& taskData) {
TaskInfoSerializable serializable(taskName, taskData);
if (!doc["tasks"].is<JsonArray>()) {
doc["tasks"] = JsonArray();
}
JsonArray tasksArr = doc["tasks"].as<JsonArray>();
JsonObject taskObj = tasksArr.add<JsonObject>();
serializable.toJson(taskObj);
}
/**
* Add a single task to the response (std::string version)
* @param taskName Name of the task
* @param taskData Task data as JsonObject
*/
void addTask(const std::string& taskName, const JsonObject& taskData) {
TaskInfoSerializable serializable(taskName, taskData);
if (!doc["tasks"].is<JsonArray>()) {
doc["tasks"] = JsonArray();
}
JsonArray tasksArr = doc["tasks"].as<JsonArray>();
JsonObject taskObj = tasksArr.add<JsonObject>();
serializable.toJson(taskObj);
}
/**
* Add multiple tasks from a task statuses map
* @param taskStatuses Map of task name to task data
*/
void addTasks(const std::map<String, JsonObject>& taskStatuses) {
for (const auto& pair : taskStatuses) {
addTask(pair.first, pair.second);
}
}
/**
* Set the system information
*/
void setSystemInfo() {
SystemInfoSerializable systemInfo;
JsonObject systemObj = doc["system"].to<JsonObject>();
systemInfo.toJson(systemObj);
}
/**
* Build complete response with all components
* @param taskStatuses Map of task name to task data
*/
void buildCompleteResponse(const std::map<String, JsonObject>& taskStatuses) {
// Set summary
size_t totalTasks = taskStatuses.size();
size_t activeTasks = 0;
for (const auto& pair : taskStatuses) {
if (pair.second["enabled"]) {
activeTasks++;
}
}
setSummary(totalTasks, activeTasks);
// Add all tasks
addTasks(taskStatuses);
// Set system info
setSystemInfo();
}
/**
* Build complete response with all components from vector
* @param taskStatuses Vector of pairs of task name to task data
*/
void buildCompleteResponse(const std::vector<std::pair<std::string, JsonObject>>& taskStatuses) {
// Clear the document first since getAllTaskStatuses creates a root array
doc.clear();
// Set summary
size_t totalTasks = taskStatuses.size();
size_t activeTasks = 0;
for (const auto& pair : taskStatuses) {
if (pair.second["enabled"]) {
activeTasks++;
}
}
setSummary(totalTasks, activeTasks);
// Add all tasks - extract data before clearing to avoid invalid references
JsonArray tasksArr = doc["tasks"].to<JsonArray>();
for (const auto& pair : taskStatuses) {
// Extract data from JsonObject before it becomes invalid
String taskName = pair.first.c_str();
unsigned long interval = pair.second["interval"];
bool enabled = pair.second["enabled"];
bool running = pair.second["running"];
bool autoStart = pair.second["autoStart"];
// Create new JsonObject in our document
JsonObject taskObj = tasksArr.add<JsonObject>();
taskObj["name"] = taskName;
taskObj["interval"] = interval;
taskObj["enabled"] = enabled;
taskObj["running"] = running;
taskObj["autoStart"] = autoStart;
}
// Set system info
setSystemInfo();
}
};
/**
* Response class for task control operations
* Handles JSON responses for task enable/disable/start/stop operations
*/
class TaskControlResponse : public ApiResponse {
public:
/**
* Set the response data for a task control operation
* @param success Whether the operation was successful
* @param message Response message
* @param taskName Name of the task
* @param action Action performed
*/
void setResponse(bool success, const String& message, const String& taskName, const String& action) {
doc["success"] = success;
doc["message"] = message;
doc["task"] = taskName;
doc["action"] = action;
}
/**
* Add detailed task information to the response
* @param taskName Name of the task
* @param enabled Whether task is enabled
* @param running Whether task is running
* @param interval Task interval
*/
void addTaskDetails(const String& taskName, bool enabled, bool running, unsigned long interval) {
JsonObject taskDetails = doc["taskDetails"].to<JsonObject>();
taskDetails["name"] = taskName;
taskDetails["enabled"] = enabled;
taskDetails["running"] = running;
taskDetails["interval"] = interval;
// Add system info
SystemInfoSerializable systemInfo;
JsonObject systemObj = taskDetails["system"].to<JsonObject>();
systemInfo.toJson(systemObj);
}
/**
* Set error response
* @param message Error message
* @param example Optional example for correct usage
*/
void setError(const String& message, const String& example = "") {
doc["success"] = false;
doc["message"] = message;
if (example.length() > 0) {
doc["example"] = example;
}
}
};
} // namespace types
} // namespace spore

View File

@@ -0,0 +1,118 @@
#pragma once
#include <Arduino.h>
/**
* @brief CPU usage measurement utility for ESP32/ESP8266
*
* This class provides methods to measure CPU usage by tracking idle time
* and calculating the percentage of time the CPU is busy vs idle.
*/
class CpuUsage {
public:
/**
* @brief Construct a new CpuUsage object
*/
CpuUsage();
/**
* @brief Destructor
*/
~CpuUsage() = default;
/**
* @brief Initialize the CPU usage measurement
* Call this once during setup
*/
void begin();
/**
* @brief Start measuring CPU usage for the current cycle
* Call this at the beginning of your main loop
*/
void startMeasurement();
/**
* @brief End measuring CPU usage for the current cycle
* Call this at the end of your main loop
*/
void endMeasurement();
/**
* @brief Get the current CPU usage percentage
* @return float CPU usage percentage (0.0 to 100.0)
*/
float getCpuUsage() const;
/**
* @brief Get the average CPU usage over the measurement window
* @return float Average CPU usage percentage (0.0 to 100.0)
*/
float getAverageCpuUsage() const;
/**
* @brief Get the maximum CPU usage recorded
* @return float Maximum CPU usage percentage (0.0 to 100.0)
*/
float getMaxCpuUsage() const;
/**
* @brief Get the minimum CPU usage recorded
* @return float Minimum CPU usage percentage (0.0 to 100.0)
*/
float getMinCpuUsage() const;
/**
* @brief Reset all CPU usage statistics
*/
void reset();
/**
* @brief Check if measurement is currently active
* @return true if measurement is active, false otherwise
*/
bool isMeasuring() const;
/**
* @brief Get the number of measurements taken
* @return unsigned long Number of measurements
*/
unsigned long getMeasurementCount() const;
private:
// Measurement state
bool _initialized;
bool _measuring;
unsigned long _measurementCount;
// Timing variables
unsigned long _cycleStartTime;
unsigned long _idleStartTime;
unsigned long _totalIdleTime;
unsigned long _totalCycleTime;
// Statistics
float _currentCpuUsage;
float _averageCpuUsage;
float _maxCpuUsage;
float _minCpuUsage;
unsigned long _totalCpuTime;
// Rolling average window
static constexpr size_t ROLLING_WINDOW_SIZE = 10;
float _rollingWindow[ROLLING_WINDOW_SIZE];
size_t _rollingIndex;
bool _rollingWindowFull;
/**
* @brief Update rolling average calculation
* @param value New value to add to rolling average
*/
void updateRollingAverage(float value);
/**
* @brief Update min/max statistics
* @param value New value to check against min/max
*/
void updateMinMax(float value);
};

View File

@@ -0,0 +1,56 @@
#pragma once
#include <ArduinoJson.h>
namespace spore {
namespace util {
/**
* Abstract base class for objects that can be serialized to/from JSON
* Provides a clean interface for converting objects to JsonObject and back
*/
class JsonSerializable {
public:
virtual ~JsonSerializable() = default;
/**
* Serialize this object to a JsonObject
* @param obj The JsonObject to populate with this object's data
*/
virtual void toJson(JsonObject& obj) const = 0;
/**
* Deserialize this object from a JsonObject
* @param obj The JsonObject containing the data to populate this object
*/
virtual void fromJson(const JsonObject& obj) = 0;
/**
* Convenience method to create a JsonObject from this object
* @param doc The JsonDocument to create the object in
* @return A JsonObject containing this object's serialized data
*/
JsonObject toJsonObject(JsonDocument& doc) const {
JsonObject obj = doc.to<JsonObject>();
toJson(obj);
return obj;
}
/**
* Convenience method to create a JsonArray from a collection of serializable objects
* @param doc The JsonDocument to create the array in
* @param objects Collection of objects implementing JsonSerializable
* @return A JsonArray containing all serialized objects
*/
template<typename Container>
static JsonArray toJsonArray(JsonDocument& doc, const Container& objects) {
JsonArray arr = doc.to<JsonArray>();
for (const auto& obj : objects) {
JsonObject item = arr.add<JsonObject>();
obj.toJson(item);
}
return arr;
}
};
} // namespace util
} // namespace spore

View File

@@ -0,0 +1,29 @@
#pragma once
#include <Arduino.h>
enum class LogLevel {
DEBUG = 0,
INFO = 1,
WARN = 2,
ERROR = 3
};
// Global log level - can be changed at runtime
extern LogLevel g_logLevel;
// Simple logging functions
void logMessage(LogLevel level, const String& component, const String& message);
void logDebug(const String& component, const String& message);
void logInfo(const String& component, const String& message);
void logWarn(const String& component, const String& message);
void logError(const String& component, const String& message);
// Set global log level
void setLogLevel(LogLevel level);
// Convenience macros - no context needed
#define LOG_DEBUG(component, message) logDebug(component, message)
#define LOG_INFO(component, message) logInfo(component, message)
#define LOG_WARN(component, message) logWarn(component, message)
#define LOG_ERROR(component, message) logError(component, message)

View File

@@ -1,6 +0,0 @@
# Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, , 0x4000,
otadata, data, ota, , 0x2000,
app0, app, ota_0, , 0x3E000,
app1, app, ota_1, , 0x3E000,
spiffs, data, spiffs, , 0x1C000,
1 # Name Type SubType Offset Size Flags
2 nvs data nvs 0x4000
3 otadata data ota 0x2000
4 app0 app ota_0 0x3E000
5 app1 app ota_1 0x3E000
6 spiffs data spiffs 0x1C000

View File

@@ -8,16 +8,95 @@
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:esp01_1m]
[platformio]
default_envs = base
src_dir = .
data_dir = ${PROJECT_DIR}/examples/${PIOENV}/data
[common]
monitor_speed = 115200
lib_deps =
esp32async/ESPAsyncWebServer@^3.8.0
bblanchon/ArduinoJson@^7.4.2
[env:base]
platform = platformio/espressif8266@^4.2.1
board = esp01_1m
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.partitions = partitions_ota_1M.csv
board_build.flash_mode = dout ; ESP01S uses DOUT on 1Mbit flash
board_build.flash_size = 1M
lib_deps =
esp32async/ESPAsyncWebServer@^3.8.0
bblanchon/ArduinoJson@^7.4.2
arkhipenko/TaskScheduler@^3.8.5
board_build.f_cpu = 80000000L
board_build.flash_mode = qio
board_build.filesystem = littlefs
; note: somehow partition table is not working, so we need to use the ldscript
board_build.ldscript = eagle.flash.1m64.ld ; 64KB -> FS Size
lib_deps = ${common.lib_deps}
build_src_filter =
+<examples/base/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>
[env:d1_mini]
platform = platformio/espressif8266@^4.2.1
board = d1_mini
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.filesystem = littlefs
board_build.flash_mode = dio ; D1 Mini uses DIO on 4 Mbit flash
board_build.flash_size = 4M
board_build.ldscript = eagle.flash.4m1m.ld
lib_deps = ${common.lib_deps}
build_src_filter =
+<examples/base/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>
[env:relay]
platform = platformio/espressif8266@^4.2.1
board = esp01_1m
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.filesystem = littlefs
board_build.flash_mode = dout
board_build.ldscript = eagle.flash.1m64.ld
lib_deps = ${common.lib_deps}
;data_dir = examples/relay/data
build_src_filter =
+<examples/relay/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>
[env:neopattern]
platform = platformio/espressif8266@^4.2.1
board = esp01_1m
framework = arduino
upload_speed = 115200
monitor_speed = 115200
board_build.filesystem = littlefs
board_build.flash_mode = dout
board_build.ldscript = eagle.flash.1m64.ld
lib_deps = ${common.lib_deps}
adafruit/Adafruit NeoPixel@^1.15.1
build_flags = -DLED_STRIP_PIN=2
build_src_filter =
+<examples/neopattern/*.cpp>
+<src/spore/*.cpp>
+<src/spore/core/*.cpp>
+<src/spore/services/*.cpp>
+<src/spore/types/*.cpp>
+<src/spore/util/*.cpp>
+<src/internal/*.cpp>

View File

@@ -1,176 +0,0 @@
#include "ApiServer.h"
ApiServer::ApiServer(NodeContext& ctx, uint16_t port) : server(port), ctx(ctx) {}
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler) {
serviceRegistry.push_back(std::make_tuple(uri, method));
// Store in NodeInfo for local node
if (ctx.memberList && !ctx.memberList->empty()) {
auto it = ctx.memberList->find(ctx.hostname);
if (it != ctx.memberList->end()) {
it->second.apiEndpoints.push_back(std::make_tuple(uri, method));
}
}
server.on(uri.c_str(), method, requestHandler);
}
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler) {
serviceRegistry.push_back(std::make_tuple(uri, method));
if (ctx.memberList && !ctx.memberList->empty()) {
auto it = ctx.memberList->find(ctx.hostname);
if (it != ctx.memberList->end()) {
it->second.apiEndpoints.push_back(std::make_tuple(uri, method));
}
}
server.on(uri.c_str(), method, requestHandler, uploadHandler);
}
void ApiServer::begin() {
addEndpoint("/api/node/status", HTTP_GET,
std::bind(&ApiServer::onSystemStatusRequest, this, std::placeholders::_1));
addEndpoint("/api/cluster/members", HTTP_GET,
std::bind(&ApiServer::onClusterMembersRequest, this, std::placeholders::_1));
addEndpoint("/api/node/update", HTTP_POST,
std::bind(&ApiServer::onFirmwareUpdateRequest, this, std::placeholders::_1),
std::bind(&ApiServer::onFirmwareUpload, this, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, std::placeholders::_4, std::placeholders::_5, std::placeholders::_6)
);
addEndpoint("/api/node/restart", HTTP_POST,
std::bind(&ApiServer::onRestartRequest, this, std::placeholders::_1));
server.begin();
}
void ApiServer::onSystemStatusRequest(AsyncWebServerRequest *request) {
JsonDocument doc;
doc["freeHeap"] = ESP.getFreeHeap();
doc["chipId"] = ESP.getChipId();
doc["sdkVersion"] = ESP.getSdkVersion();
doc["cpuFreqMHz"] = ESP.getCpuFreqMHz();
doc["flashChipSize"] = ESP.getFlashChipSize();
JsonArray apiArr = doc["api"].to<JsonArray>();
for (const auto& entry : serviceRegistry) {
JsonObject apiObj = apiArr.add<JsonObject>();
apiObj["uri"] = std::get<0>(entry);
apiObj["method"] = std::get<1>(entry);
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void ApiServer::onClusterMembersRequest(AsyncWebServerRequest *request) {
JsonDocument doc;
JsonArray arr = doc["members"].to<JsonArray>();
for (const auto& pair : *ctx.memberList) {
const NodeInfo& node = pair.second;
JsonObject obj = arr.add<JsonObject>();
obj["hostname"] = node.hostname;
obj["ip"] = node.ip.toString();
obj["lastSeen"] = node.lastSeen;
obj["latency"] = node.latency;
obj["status"] = statusToStr(node.status);
obj["resources"]["freeHeap"] = node.resources.freeHeap;
obj["resources"]["chipId"] = node.resources.chipId;
obj["resources"]["sdkVersion"] = node.resources.sdkVersion;
obj["resources"]["cpuFreqMHz"] = node.resources.cpuFreqMHz;
obj["resources"]["flashChipSize"] = node.resources.flashChipSize;
JsonArray apiArr = obj["api"].to<JsonArray>();
for (const auto& endpoint : node.apiEndpoints) {
JsonObject apiObj = apiArr.add<JsonObject>();
apiObj["uri"] = std::get<0>(endpoint);
methodToStr(endpoint, apiObj);
}
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void ApiServer::methodToStr(const std::tuple<String, int> &endpoint, ArduinoJson::V742PB22::JsonObject &apiObj)
{
int method = std::get<1>(endpoint);
const char *methodStr = nullptr;
switch (method)
{
case HTTP_GET:
methodStr = "GET";
break;
case HTTP_POST:
methodStr = "POST";
break;
case HTTP_PUT:
methodStr = "PUT";
break;
case HTTP_DELETE:
methodStr = "DELETE";
break;
case HTTP_PATCH:
methodStr = "PATCH";
break;
default:
methodStr = "UNKNOWN";
break;
}
apiObj["method"] = methodStr;
}
void ApiServer::onFirmwareUpdateRequest(AsyncWebServerRequest *request) {
bool hasError = !Update.hasError();
AsyncWebServerResponse *response = request->beginResponse(200, "application/json", hasError ? "{\"status\": \"OK\"}" : "{\"status\": \"FAIL\"}");
response->addHeader("Connection", "close");
request->send(response);
request->onDisconnect([]() {
Serial.println("[API] Restart device");
delay(10);
ESP.restart();
});
}
void ApiServer::onFirmwareUpload(AsyncWebServerRequest *request, const String &filename, size_t index, uint8_t *data, size_t len, bool final) {
if (!index) {
Serial.print("[OTA] Update Start ");
Serial.println(filename);
Update.runAsync(true);
if(!Update.begin(request->contentLength(), U_FLASH)) {
Serial.println("[OTA] Update failed: not enough space");
Update.printError(Serial);
AsyncWebServerResponse *response = request->beginResponse(500, "application/json", "{\"status\": \"FAIL\"}");
response->addHeader("Connection", "close");
request->send(response);
return;
} else {
Update.printError(Serial);
}
}
if (!Update.hasError()){
if (Update.write(data, len) != len) {
Update.printError(Serial);
}
}
if (final) {
if (Update.end(true)) {
if(Update.isFinished()) {
Serial.print("[OTA] Update Success with ");
Serial.print(index + len);
Serial.println("B");
} else {
Serial.println("[OTA] Update not finished");
}
} else {
Serial.print("[OTA] Update failed: ");
Update.printError(Serial);
}
}
return;
}
void ApiServer::onRestartRequest(AsyncWebServerRequest *request) {
AsyncWebServerResponse *response = request->beginResponse(200, "application/json", "{\"status\": \"restarting\"}");
response->addHeader("Connection", "close");
request->send(response);
request->onDisconnect([]() {
Serial.println("[API] Restart device");
delay(10);
ESP.restart();
});
}

View File

@@ -1,33 +0,0 @@
#pragma once
#include <Arduino.h>
#include <ArduinoJson.h>
#include <ESPAsyncWebServer.h>
#include <Updater.h>
#include <functional>
#include <vector>
#include <tuple>
#include "NodeContext.h"
#include "NodeInfo.h"
using namespace std;
using namespace std::placeholders;
class ApiServer {
public:
ApiServer(NodeContext& ctx, uint16_t port = 80);
void begin();
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler);
void addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler);
private:
AsyncWebServer server;
NodeContext& ctx;
std::vector<std::tuple<String, int>> serviceRegistry;
void onClusterMembersRequest(AsyncWebServerRequest *request);
void methodToStr(const std::tuple<String, int> &endpoint, ArduinoJson::V742PB22::JsonObject &apiObj);
void onSystemStatusRequest(AsyncWebServerRequest *request);
void onFirmwareUpdateRequest(AsyncWebServerRequest *request);
void onFirmwareUpload(AsyncWebServerRequest *request, const String &filename, size_t index, uint8_t *data, size_t len, bool final);
void onRestartRequest(AsyncWebServerRequest *request);
};

View File

@@ -1,188 +0,0 @@
#include "ClusterManager.h"
ClusterManager::ClusterManager(NodeContext& ctx) : ctx(ctx) {
// Register callback for node_discovered event
ctx.on("node_discovered", [this](void* data) {
NodeInfo* node = static_cast<NodeInfo*>(data);
this->addOrUpdateNode(node->hostname, node->ip);
});
}
void ClusterManager::sendDiscovery() {
//Serial.println("[Cluster] Sending discovery packet...");
ctx.udp->beginPacket("255.255.255.255", ctx.config.udp_port);
ctx.udp->write(ClusterProtocol::DISCOVERY_MSG);
ctx.udp->endPacket();
}
void ClusterManager::listenForDiscovery() {
int packetSize = ctx.udp->parsePacket();
if (packetSize) {
char incoming[ClusterProtocol::UDP_BUF_SIZE];
int len = ctx.udp->read(incoming, ClusterProtocol::UDP_BUF_SIZE);
if (len > 0) {
incoming[len] = 0;
}
//Serial.printf("[UDP] Packet received: %s\n", incoming);
if (strcmp(incoming, ClusterProtocol::DISCOVERY_MSG) == 0) {
//Serial.printf("[UDP] Discovery request from: %s\n", ctx.udp->remoteIP().toString().c_str());
ctx.udp->beginPacket(ctx.udp->remoteIP(), ctx.config.udp_port);
String response = String(ClusterProtocol::RESPONSE_MSG) + ":" + ctx.hostname;
ctx.udp->write(response.c_str());
ctx.udp->endPacket();
//Serial.printf("[UDP] Sent response with hostname: %s\n", ctx.hostname.c_str());
} else if (strncmp(incoming, ClusterProtocol::RESPONSE_MSG, strlen(ClusterProtocol::RESPONSE_MSG)) == 0) {
char* hostPtr = incoming + strlen(ClusterProtocol::RESPONSE_MSG) + 1;
String nodeHost = String(hostPtr);
addOrUpdateNode(nodeHost, ctx.udp->remoteIP());
}
}
}
void ClusterManager::addOrUpdateNode(const String& nodeHost, IPAddress nodeIP) {
auto& memberList = *ctx.memberList;
// O(1) lookup instead of O(n) search
auto it = memberList.find(nodeHost);
if (it != memberList.end()) {
// Update existing node
it->second.ip = nodeIP;
it->second.lastSeen = millis();
//fetchNodeInfo(nodeIP); // Do not fetch here, handled by periodic task
return;
}
// Add new node
NodeInfo newNode;
newNode.hostname = nodeHost;
newNode.ip = nodeIP;
newNode.lastSeen = millis();
updateNodeStatus(newNode, newNode.lastSeen, ctx.config.node_inactive_threshold_ms, ctx.config.node_dead_threshold_ms);
memberList[nodeHost] = newNode;
Serial.printf("[Cluster] Added node: %s @ %s | Status: %s | last update: 0\n",
nodeHost.c_str(),
newNode.ip.toString().c_str(),
statusToStr(newNode.status));
//fetchNodeInfo(nodeIP); // Do not fetch here, handled by periodic task
}
void ClusterManager::fetchNodeInfo(const IPAddress& ip) {
if(ip == ctx.localIP) {
Serial.println("[Cluster] Skipping fetch for local node");
return;
}
HTTPClient http;
WiFiClient client;
String url = "http://" + ip.toString() + ClusterProtocol::API_NODE_STATUS;
http.begin(client, url);
int httpCode = http.GET();
if (httpCode == 200) {
String payload = http.getString();
JsonDocument doc;
DeserializationError err = deserializeJson(doc, payload);
if (!err) {
auto& memberList = *ctx.memberList;
// Still need to iterate since we're searching by IP, not hostname
for (auto& pair : memberList) {
NodeInfo& node = pair.second;
if (node.ip == ip) {
node.resources.freeHeap = doc["freeHeap"];
node.resources.chipId = doc["chipId"];
node.resources.sdkVersion = (const char*)doc["sdkVersion"];
node.resources.cpuFreqMHz = doc["cpuFreqMHz"];
node.resources.flashChipSize = doc["flashChipSize"];
node.status = NodeInfo::ACTIVE;
node.lastSeen = millis();
node.apiEndpoints.clear();
if (doc["api"].is<JsonArray>()) {
JsonArray apiArr = doc["api"].as<JsonArray>();
for (JsonObject apiObj : apiArr) {
String uri = (const char*)apiObj["uri"];
int method = apiObj["method"];
node.apiEndpoints.push_back(std::make_tuple(uri, method));
}
}
Serial.printf("[Cluster] Fetched info for node: %s @ %s\n", node.hostname.c_str(), ip.toString().c_str());
break;
}
}
}
} else {
Serial.printf("[Cluster] Failed to fetch info for node @ %s, HTTP code: %d\n", ip.toString().c_str(), httpCode);
}
http.end();
}
void ClusterManager::heartbeatTaskCallback() {
auto& memberList = *ctx.memberList;
auto it = memberList.find(ctx.hostname);
if (it != memberList.end()) {
NodeInfo& node = it->second;
node.lastSeen = millis();
node.status = NodeInfo::ACTIVE;
updateLocalNodeResources();
ctx.fire("node_discovered", &node);
}
}
void ClusterManager::updateAllMembersInfoTaskCallback() {
auto& memberList = *ctx.memberList;
for (auto& pair : memberList) {
const NodeInfo& node = pair.second;
if (node.ip != ctx.localIP) {
fetchNodeInfo(node.ip);
}
}
}
void ClusterManager::updateAllNodeStatuses() {
auto& memberList = *ctx.memberList;
unsigned long now = millis();
for (auto& pair : memberList) {
NodeInfo& node = pair.second;
updateNodeStatus(node, now, ctx.config.node_inactive_threshold_ms, ctx.config.node_dead_threshold_ms);
node.latency = now - node.lastSeen;
}
}
void ClusterManager::removeDeadNodes() {
auto& memberList = *ctx.memberList;
unsigned long now = millis();
// Use iterator to safely remove elements from map
for (auto it = memberList.begin(); it != memberList.end(); ) {
unsigned long diff = now - it->second.lastSeen;
if (it->second.status == NodeInfo::DEAD && diff > ctx.config.node_dead_threshold_ms) {
Serial.printf("[Cluster] Removing node: %s\n", it->second.hostname.c_str());
it = memberList.erase(it);
} else {
++it;
}
}
}
void ClusterManager::printMemberList() {
auto& memberList = *ctx.memberList;
if (memberList.empty()) {
Serial.println("[Cluster] Member List: empty");
return;
}
Serial.println("[Cluster] Member List:");
for (const auto& pair : memberList) {
const NodeInfo& node = pair.second;
Serial.printf(" %s @ %s | Status: %s | last seen: %lu\n", node.hostname.c_str(), node.ip.toString().c_str(), statusToStr(node.status), millis() - node.lastSeen);
}
}
void ClusterManager::updateLocalNodeResources() {
auto& memberList = *ctx.memberList;
auto it = memberList.find(ctx.hostname);
if (it != memberList.end()) {
NodeInfo& node = it->second;
node.resources.freeHeap = ESP.getFreeHeap();
node.resources.chipId = ESP.getChipId();
node.resources.sdkVersion = String(ESP.getSdkVersion());
node.resources.cpuFreqMHz = ESP.getCpuFreqMHz();
node.resources.flashChipSize = ESP.getFlashChipSize();
}
}

View File

@@ -1,58 +0,0 @@
#include "NetworkManager.h"
// SSID and password are now configured via Config class
NetworkManager::NetworkManager(NodeContext& ctx) : ctx(ctx) {}
void NetworkManager::setHostnameFromMac() {
uint8_t mac[6];
WiFi.macAddress(mac);
char buf[32];
sprintf(buf, "esp-%02X%02X%02X%02X%02X%02X", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
WiFi.hostname(buf);
ctx.hostname = String(buf);
}
void NetworkManager::setupWiFi() {
Serial.begin(115200);
WiFi.mode(WIFI_STA);
WiFi.begin(ctx.config.wifi_ssid.c_str(), ctx.config.wifi_password.c_str());
Serial.println("[WiFi] Connecting to AP...");
unsigned long startAttemptTime = millis();
while (WiFi.status() != WL_CONNECTED && millis() - startAttemptTime < ctx.config.wifi_connect_timeout_ms) {
delay(ctx.config.wifi_retry_delay_ms);
Serial.print(".");
}
if (WiFi.status() == WL_CONNECTED) {
Serial.println();
Serial.print("[WiFi] Connected to AP, IP: ");
Serial.println(WiFi.localIP());
} else {
Serial.println();
Serial.println("[WiFi] Failed to connect to AP. Creating AP...");
WiFi.mode(WIFI_AP);
WiFi.softAP(ctx.config.wifi_ssid.c_str(), ctx.config.wifi_password.c_str());
Serial.print("[WiFi] AP created, IP: ");
Serial.println(WiFi.softAPIP());
}
setHostnameFromMac();
ctx.udp->begin(ctx.config.udp_port);
ctx.localIP = WiFi.localIP();
ctx.hostname = WiFi.hostname();
Serial.print("[WiFi] Hostname set to: ");
Serial.println(ctx.hostname);
Serial.printf("[WiFi] UDP listening on port %d\n", ctx.config.udp_port);
// Register this node in the memberlist via event system
NodeInfo self;
self.hostname = ctx.hostname;
if(WiFi.isConnected()) {
self.ip = WiFi.localIP();
} else {
// Fallback to AP IP if not connected
self.ip = WiFi.softAPIP();
}
self.lastSeen = millis();
self.status = NodeInfo::ACTIVE;
ctx.fire("node_discovered", &self);
}

View File

@@ -1,12 +0,0 @@
#pragma once
#include "NodeContext.h"
#include <ESP8266WiFi.h>
class NetworkManager {
public:
NetworkManager(NodeContext& ctx);
void setupWiFi();
void setHostnameFromMac();
private:
NodeContext& ctx;
};

View File

@@ -1,5 +0,0 @@
/*
* https://github.com/arkhipenko/TaskScheduler/tree/master/examples/Scheduler_example16_Multitab
*/
#include <TaskScheduler.h>

View File

@@ -1,50 +0,0 @@
#include <Arduino.h>
#include "Globals.h"
#include "NodeContext.h"
#include "NetworkManager.h"
#include "ClusterManager.h"
#include "ApiServer.h"
NodeContext ctx;
NetworkManager network(ctx);
ClusterManager cluster(ctx);
ApiServer apiServer(ctx, ctx.config.api_server_port);
Task tSendDiscovery(0, TASK_FOREVER, [](){ cluster.sendDiscovery(); });
Task tListenForDiscovery(0, TASK_FOREVER, [](){ cluster.listenForDiscovery(); });
Task tUpdateStatus(0, TASK_FOREVER, [](){ cluster.updateAllNodeStatuses(); cluster.removeDeadNodes(); });
Task tPrintMemberList(0, TASK_FOREVER, [](){ cluster.printMemberList(); });
Task tHeartbeat(0, TASK_FOREVER, [](){ cluster.heartbeatTaskCallback(); });
Task tUpdateAllMembersInfo(0, TASK_FOREVER, [](){ cluster.updateAllMembersInfoTaskCallback(); });
void setup() {
network.setupWiFi();
ctx.scheduler->init();
// Set task intervals from config
tSendDiscovery.setInterval(ctx.config.discovery_interval_ms);
tListenForDiscovery.setInterval(ctx.config.discovery_interval_ms / 10); // Listen more frequently
tUpdateStatus.setInterval(ctx.config.status_update_interval_ms);
tPrintMemberList.setInterval(ctx.config.print_interval_ms);
tHeartbeat.setInterval(ctx.config.heartbeat_interval_ms);
tUpdateAllMembersInfo.setInterval(ctx.config.member_info_update_interval_ms);
ctx.scheduler->addTask(tSendDiscovery);
ctx.scheduler->addTask(tListenForDiscovery);
ctx.scheduler->addTask(tUpdateStatus);
ctx.scheduler->addTask(tPrintMemberList);
ctx.scheduler->addTask(tHeartbeat);
ctx.scheduler->addTask(tUpdateAllMembersInfo);
tSendDiscovery.enable();
tListenForDiscovery.enable();
tUpdateStatus.enable();
tPrintMemberList.enable();
tHeartbeat.enable();
tUpdateAllMembersInfo.enable();
apiServer.begin();
}
void loop() {
ctx.scheduler->execute();
yield();
}

171
src/spore/Spore.cpp Normal file
View File

@@ -0,0 +1,171 @@
#include "spore/Spore.h"
#include "spore/services/NodeService.h"
#include "spore/services/NetworkService.h"
#include "spore/services/ClusterService.h"
#include "spore/services/TaskService.h"
#include "spore/services/StaticFileService.h"
#include "spore/services/MonitoringService.h"
#include <Arduino.h>
Spore::Spore() : ctx(), network(ctx), taskManager(ctx), cluster(ctx, taskManager),
apiServer(ctx, taskManager, ctx.config.api_server_port),
cpuUsage(), initialized(false), apiServerStarted(false) {
}
Spore::Spore(std::initializer_list<std::pair<String, String>> initialLabels)
: ctx(initialLabels), network(ctx), taskManager(ctx), cluster(ctx, taskManager),
apiServer(ctx, taskManager, ctx.config.api_server_port),
cpuUsage(), initialized(false), apiServerStarted(false) {
}
Spore::~Spore() {
// Services will be automatically cleaned up by shared_ptr
}
void Spore::setup() {
if (initialized) {
LOG_INFO("Spore", "Already initialized, skipping setup");
return;
}
Serial.begin(115200);
LOG_INFO("Spore", "Starting Spore framework...");
// Initialize core components
initializeCore();
// Initialize CPU usage monitoring
cpuUsage.begin();
// Register core services
registerCoreServices();
initialized = true;
LOG_INFO("Spore", "Framework setup complete - call begin() to start API server");
}
void Spore::begin() {
if (!initialized) {
LOG_ERROR("Spore", "Framework not initialized, call setup() first");
return;
}
if (apiServerStarted) {
LOG_WARN("Spore", "API server already started");
return;
}
LOG_INFO("Spore", "Starting API server...");
// Start API server
startApiServer();
// Print initial task status
taskManager.printTaskStatus();
LOG_INFO("Spore", "Framework ready!");
}
void Spore::loop() {
if (!initialized) {
LOG_ERROR("Spore", "Framework not initialized, call setup() first");
return;
}
// Start CPU usage measurement
cpuUsage.startMeasurement();
// Execute main tasks
taskManager.execute();
// End CPU usage measurement before yield
cpuUsage.endMeasurement();
// Yield to allow other tasks to run
yield();
}
void Spore::addService(std::shared_ptr<Service> service) {
if (!service) {
LOG_WARN("Spore", "Attempted to add null service");
return;
}
services.push_back(service);
if (apiServerStarted) {
// If API server is already started, register the service immediately
apiServer.addService(*service);
LOG_INFO("Spore", "Added service '" + String(service->getName()) + "' to running API server");
} else {
LOG_INFO("Spore", "Registered service '" + String(service->getName()) + "' (will be added to API server when begin() is called)");
}
}
void Spore::addService(Service* service) {
if (!service) {
LOG_WARN("Spore", "Attempted to add null service");
return;
}
// Wrap raw pointer in shared_ptr with no-op deleter to avoid double-delete
addService(std::shared_ptr<Service>(service, [](Service*){}));
}
void Spore::initializeCore() {
LOG_INFO("Spore", "Initializing core components...");
// Setup WiFi first
network.setupWiFi();
// Initialize task manager
taskManager.initialize();
LOG_INFO("Spore", "Core components initialized");
}
void Spore::registerCoreServices() {
LOG_INFO("Spore", "Registering core services...");
// Create core services
auto nodeService = std::make_shared<NodeService>(ctx, apiServer);
auto networkService = std::make_shared<NetworkService>(network);
auto clusterService = std::make_shared<ClusterService>(ctx);
auto taskService = std::make_shared<TaskService>(taskManager);
auto staticFileService = std::make_shared<StaticFileService>(ctx, apiServer);
auto monitoringService = std::make_shared<MonitoringService>(cpuUsage);
// Add to services list
services.push_back(nodeService);
services.push_back(networkService);
services.push_back(clusterService);
services.push_back(taskService);
services.push_back(staticFileService);
services.push_back(monitoringService);
LOG_INFO("Spore", "Core services registered");
}
void Spore::startApiServer() {
if (apiServerStarted) {
LOG_WARN("Spore", "API server already started");
return;
}
LOG_INFO("Spore", "Starting API server...");
// Register all services with API server
for (auto& service : services) {
if (service) {
apiServer.addService(*service);
LOG_INFO("Spore", "Added service '" + String(service->getName()) + "' to API server");
}
}
// Start the API server
apiServer.begin();
apiServerStarted = true;
LOG_INFO("Spore", "API server started");
}

View File

@@ -0,0 +1,71 @@
#include "spore/core/ApiServer.h"
#include "spore/Service.h"
#include "spore/util/Logging.h"
#include <algorithm>
const char* ApiServer::methodToStr(int method) {
switch (method) {
case HTTP_GET: return "GET";
case HTTP_POST: return "POST";
case HTTP_PUT: return "PUT";
case HTTP_DELETE: return "DELETE";
case HTTP_PATCH: return "PATCH";
default: return "UNKNOWN";
}
}
ApiServer::ApiServer(NodeContext& ctx, TaskManager& taskMgr, uint16_t port) : server(port), ctx(ctx), taskManager(taskMgr) {}
void ApiServer::registerEndpoint(const String& uri, int method,
const std::vector<ParamSpec>& params,
const String& serviceName) {
// Add to local endpoints
endpoints.push_back(EndpointInfo{uri, method, params, serviceName, true});
}
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const String& serviceName) {
registerEndpoint(uri, method, {}, serviceName);
server.on(uri.c_str(), method, requestHandler);
}
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const String& serviceName) {
registerEndpoint(uri, method, {}, serviceName);
server.on(uri.c_str(), method, requestHandler, uploadHandler);
}
// Overloads that also record minimal capability specs
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
const std::vector<ParamSpec>& params, const String& serviceName) {
registerEndpoint(uri, method, params, serviceName);
server.on(uri.c_str(), method, requestHandler);
}
void ApiServer::addEndpoint(const String& uri, int method, std::function<void(AsyncWebServerRequest*)> requestHandler,
std::function<void(AsyncWebServerRequest*, const String&, size_t, uint8_t*, size_t, bool)> uploadHandler,
const std::vector<ParamSpec>& params, const String& serviceName) {
registerEndpoint(uri, method, params, serviceName);
server.on(uri.c_str(), method, requestHandler, uploadHandler);
}
void ApiServer::addService(Service& service) {
services.push_back(service);
LOG_INFO("API", "Added service: " + String(service.getName()));
}
void ApiServer::serveStatic(const String& uri, fs::FS& fs, const String& path, const String& cache_header) {
server.serveStatic(uri.c_str(), fs, path.c_str(), cache_header.c_str()).setDefaultFile("index.html");
LOG_INFO("API", "Registered static file serving: " + uri + " -> " + path);
}
void ApiServer::begin() {
// Register all service endpoints
for (auto& service : services) {
service.get().registerEndpoints(*this);
LOG_INFO("API", "Registered endpoints for service: " + String(service.get().getName()));
}
server.begin();
}

View File

@@ -0,0 +1,281 @@
#include "spore/core/ClusterManager.h"
#include "spore/internal/Globals.h"
#include "spore/util/Logging.h"
ClusterManager::ClusterManager(NodeContext& ctx, TaskManager& taskMgr) : ctx(ctx), taskManager(taskMgr) {
// Register callback for node_discovered event
ctx.on("node_discovered", [this](void* data) {
NodeInfo* node = static_cast<NodeInfo*>(data);
this->addOrUpdateNode(node->hostname, node->ip);
});
// Register tasks
registerTasks();
}
void ClusterManager::registerTasks() {
taskManager.registerTask("discovery_send", ctx.config.discovery_interval_ms, [this]() { sendDiscovery(); });
taskManager.registerTask("discovery_listen", ctx.config.discovery_interval_ms / 10, [this]() { listenForDiscovery(); });
taskManager.registerTask("status_update", ctx.config.status_update_interval_ms, [this]() { updateAllNodeStatuses(); removeDeadNodes(); });
taskManager.registerTask("print_members", ctx.config.print_interval_ms, [this]() { printMemberList(); });
taskManager.registerTask("heartbeat", ctx.config.heartbeat_interval_ms, [this]() { heartbeatTaskCallback(); });
taskManager.registerTask("update_members_info", ctx.config.member_info_update_interval_ms, [this]() { updateAllMembersInfoTaskCallback(); });
LOG_INFO("ClusterManager", "Registered all cluster tasks");
}
void ClusterManager::sendDiscovery() {
//LOG_DEBUG(ctx, "Cluster", "Sending discovery packet...");
ctx.udp->beginPacket("255.255.255.255", ctx.config.udp_port);
ctx.udp->write(ClusterProtocol::DISCOVERY_MSG);
ctx.udp->endPacket();
}
void ClusterManager::listenForDiscovery() {
int packetSize = ctx.udp->parsePacket();
if (packetSize) {
char incoming[ClusterProtocol::UDP_BUF_SIZE];
int len = ctx.udp->read(incoming, ClusterProtocol::UDP_BUF_SIZE);
if (len > 0) {
incoming[len] = 0;
}
//LOG_DEBUG(ctx, "UDP", "Packet received: " + String(incoming));
if (strcmp(incoming, ClusterProtocol::DISCOVERY_MSG) == 0) {
//LOG_DEBUG(ctx, "UDP", "Discovery request from: " + ctx.udp->remoteIP().toString());
ctx.udp->beginPacket(ctx.udp->remoteIP(), ctx.config.udp_port);
String response = String(ClusterProtocol::RESPONSE_MSG) + ":" + ctx.hostname;
ctx.udp->write(response.c_str());
ctx.udp->endPacket();
//LOG_DEBUG(ctx, "UDP", "Sent response with hostname: " + ctx.hostname);
} else if (strncmp(incoming, ClusterProtocol::RESPONSE_MSG, strlen(ClusterProtocol::RESPONSE_MSG)) == 0) {
char* hostPtr = incoming + strlen(ClusterProtocol::RESPONSE_MSG) + 1;
String nodeHost = String(hostPtr);
addOrUpdateNode(nodeHost, ctx.udp->remoteIP());
}
}
}
void ClusterManager::addOrUpdateNode(const String& nodeHost, IPAddress nodeIP) {
auto& memberList = *ctx.memberList;
// O(1) lookup instead of O(n) search
auto it = memberList.find(nodeHost);
if (it != memberList.end()) {
// Update existing node
it->second.ip = nodeIP;
it->second.lastSeen = millis();
//fetchNodeInfo(nodeIP); // Do not fetch here, handled by periodic task
return;
}
// Add new node
NodeInfo newNode;
newNode.hostname = nodeHost;
newNode.ip = nodeIP;
newNode.lastSeen = millis();
updateNodeStatus(newNode, newNode.lastSeen, ctx.config.node_inactive_threshold_ms, ctx.config.node_dead_threshold_ms);
memberList[nodeHost] = newNode;
LOG_INFO("Cluster", "Added node: " + nodeHost + " @ " + newNode.ip.toString() + " | Status: " + statusToStr(newNode.status) + " | last update: 0");
//fetchNodeInfo(nodeIP); // Do not fetch here, handled by periodic task
}
void ClusterManager::fetchNodeInfo(const IPAddress& ip) {
if(ip == ctx.localIP) {
LOG_DEBUG("Cluster", "Skipping fetch for local node");
return;
}
unsigned long requestStart = millis();
HTTPClient http;
WiFiClient client;
String url = "http://" + ip.toString() + ClusterProtocol::API_NODE_STATUS;
// Use RAII pattern to ensure http.end() is always called
bool httpInitialized = false;
bool success = false;
httpInitialized = http.begin(client, url);
if (!httpInitialized) {
LOG_ERROR("Cluster", "Failed to initialize HTTP client for " + ip.toString());
return;
}
// Set timeout to prevent hanging
http.setTimeout(5000); // 5 second timeout
int httpCode = http.GET();
unsigned long requestEnd = millis();
unsigned long requestDuration = requestEnd - requestStart;
if (httpCode == 200) {
String payload = http.getString();
// Use stack-allocated JsonDocument with proper cleanup
JsonDocument doc;
DeserializationError err = deserializeJson(doc, payload);
if (!err) {
auto& memberList = *ctx.memberList;
// Still need to iterate since we're searching by IP, not hostname
for (auto& pair : memberList) {
NodeInfo& node = pair.second;
if (node.ip == ip) {
// Update resources efficiently
node.resources.freeHeap = doc["freeHeap"];
node.resources.chipId = doc["chipId"];
node.resources.sdkVersion = (const char*)doc["sdkVersion"];
node.resources.cpuFreqMHz = doc["cpuFreqMHz"];
node.resources.flashChipSize = doc["flashChipSize"];
node.status = NodeInfo::ACTIVE;
node.latency = requestDuration;
node.lastSeen = millis();
// Clear and rebuild endpoints efficiently
node.endpoints.clear();
node.endpoints.reserve(10); // Pre-allocate to avoid reallocations
if (doc["api"].is<JsonArray>()) {
JsonArray apiArr = doc["api"].as<JsonArray>();
for (JsonObject apiObj : apiArr) {
// Use const char* to avoid String copies
const char* uri = apiObj["uri"];
int method = apiObj["method"];
// Create basic EndpointInfo without params for cluster nodes
EndpointInfo endpoint;
endpoint.uri = uri; // String assignment is more efficient than construction
endpoint.method = method;
endpoint.isLocal = false;
endpoint.serviceName = "remote";
node.endpoints.push_back(std::move(endpoint));
}
}
// Parse labels efficiently
node.labels.clear();
if (doc["labels"].is<JsonObject>()) {
JsonObject labelsObj = doc["labels"].as<JsonObject>();
for (JsonPair kvp : labelsObj) {
// Use const char* to avoid String copies
const char* key = kvp.key().c_str();
const char* value = labelsObj[kvp.key()];
node.labels[key] = value;
}
}
LOG_DEBUG("Cluster", "Fetched info for node: " + node.hostname + " @ " + ip.toString());
success = true;
break;
}
}
} else {
LOG_ERROR("Cluster", "JSON parse error for node @ " + ip.toString() + ": " + String(err.c_str()));
}
} else {
LOG_ERROR("Cluster", "Failed to fetch info for node @ " + ip.toString() + ", HTTP code: " + String(httpCode));
}
// Always ensure HTTP client is properly closed
if (httpInitialized) {
http.end();
}
// Log success/failure for debugging
if (!success) {
LOG_DEBUG("Cluster", "Failed to update node info for " + ip.toString());
}
}
void ClusterManager::heartbeatTaskCallback() {
auto& memberList = *ctx.memberList;
auto it = memberList.find(ctx.hostname);
if (it != memberList.end()) {
NodeInfo& node = it->second;
node.lastSeen = millis();
node.status = NodeInfo::ACTIVE;
updateLocalNodeResources();
ctx.fire("node_discovered", &node);
}
}
void ClusterManager::updateAllMembersInfoTaskCallback() {
auto& memberList = *ctx.memberList;
// Limit concurrent HTTP requests to prevent memory pressure
const size_t maxConcurrentRequests = ctx.config.max_concurrent_http_requests;
size_t requestCount = 0;
for (auto& pair : memberList) {
const NodeInfo& node = pair.second;
if (node.ip != ctx.localIP) {
// Only process a limited number of requests per cycle
if (requestCount >= maxConcurrentRequests) {
LOG_DEBUG("Cluster", "Limiting concurrent HTTP requests to prevent memory pressure");
break;
}
fetchNodeInfo(node.ip);
requestCount++;
// Add small delay between requests to prevent overwhelming the system
delay(100);
}
}
}
void ClusterManager::updateAllNodeStatuses() {
auto& memberList = *ctx.memberList;
unsigned long now = millis();
for (auto& pair : memberList) {
NodeInfo& node = pair.second;
updateNodeStatus(node, now, ctx.config.node_inactive_threshold_ms, ctx.config.node_dead_threshold_ms);
}
}
void ClusterManager::removeDeadNodes() {
auto& memberList = *ctx.memberList;
unsigned long now = millis();
// Use iterator to safely remove elements from map
for (auto it = memberList.begin(); it != memberList.end(); ) {
unsigned long diff = now - it->second.lastSeen;
if (it->second.status == NodeInfo::DEAD && diff > ctx.config.node_dead_threshold_ms) {
LOG_INFO("Cluster", "Removing node: " + it->second.hostname);
it = memberList.erase(it);
} else {
++it;
}
}
}
void ClusterManager::printMemberList() {
auto& memberList = *ctx.memberList;
if (memberList.empty()) {
LOG_INFO("Cluster", "Member List: empty");
return;
}
LOG_INFO("Cluster", "Member List:");
for (const auto& pair : memberList) {
const NodeInfo& node = pair.second;
LOG_INFO("Cluster", " " + node.hostname + " @ " + node.ip.toString() + " | Status: " + statusToStr(node.status) + " | last seen: " + String(millis() - node.lastSeen));
}
}
void ClusterManager::updateLocalNodeResources() {
auto& memberList = *ctx.memberList;
auto it = memberList.find(ctx.hostname);
if (it != memberList.end()) {
NodeInfo& node = it->second;
uint32_t freeHeap = ESP.getFreeHeap();
node.resources.freeHeap = freeHeap;
node.resources.chipId = ESP.getChipId();
node.resources.sdkVersion = String(ESP.getSdkVersion());
node.resources.cpuFreqMHz = ESP.getCpuFreqMHz();
node.resources.flashChipSize = ESP.getFlashChipSize();
// Log memory warnings if heap is getting low
if (freeHeap < ctx.config.low_memory_threshold_bytes) {
LOG_WARN("Cluster", "Low memory warning: " + String(freeHeap) + " bytes free");
} else if (freeHeap < ctx.config.critical_memory_threshold_bytes) {
LOG_ERROR("Cluster", "Critical memory warning: " + String(freeHeap) + " bytes free");
}
}
}

View File

@@ -0,0 +1,122 @@
#include "spore/core/NetworkManager.h"
#include "spore/util/Logging.h"
// SSID and password are now configured via Config class
void NetworkManager::scanWifi() {
if (!isScanning) {
isScanning = true;
LOG_INFO("WiFi", "Starting WiFi scan...");
// Start async WiFi scan
WiFi.scanNetworksAsync([this](int networksFound) {
LOG_INFO("WiFi", "Scan completed, found " + String(networksFound) + " networks");
this->processAccessPoints();
this->isScanning = false;
}, true);
} else {
LOG_WARN("WiFi", "Scan already in progress...");
}
}
void NetworkManager::processAccessPoints() {
int numNetworks = WiFi.scanComplete();
if (numNetworks <= 0) {
LOG_WARN("WiFi", "No networks found or scan not complete");
return;
}
// Clear existing access points
accessPoints.clear();
// Process each network found
for (int i = 0; i < numNetworks; i++) {
AccessPoint ap;
ap.ssid = WiFi.SSID(i);
ap.rssi = WiFi.RSSI(i);
ap.encryptionType = WiFi.encryptionType(i);
ap.channel = WiFi.channel(i);
ap.isHidden = ap.ssid.length() == 0;
// Copy BSSID
uint8_t* newBssid = new uint8_t[6];
memcpy(newBssid, WiFi.BSSID(i), 6);
ap.bssid = newBssid;
accessPoints.push_back(ap);
LOG_DEBUG("WiFi", "Found network " + String(i + 1) + ": " + ap.ssid + ", Ch: " + String(ap.channel) + ", RSSI: " + String(ap.rssi));
}
// Free the memory used by the scan
WiFi.scanDelete();
}
std::vector<AccessPoint> NetworkManager::getAccessPoints() const {
return accessPoints;
}
NetworkManager::NetworkManager(NodeContext& ctx) : ctx(ctx) {}
void NetworkManager::setWiFiConfig(const String& ssid, const String& password,
uint32_t connect_timeout_ms, uint32_t retry_delay_ms) {
ctx.config.wifi_ssid = ssid;
ctx.config.wifi_password = password;
ctx.config.wifi_connect_timeout_ms = connect_timeout_ms;
ctx.config.wifi_retry_delay_ms = retry_delay_ms;
}
void NetworkManager::setHostnameFromMac() {
uint8_t mac[6];
WiFi.macAddress(mac);
char buf[32];
sprintf(buf, "esp-%02X%02X%02X%02X%02X%02X", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
WiFi.hostname(buf);
ctx.hostname = String(buf);
}
void NetworkManager::setupWiFi() {
WiFi.mode(WIFI_STA);
WiFi.begin(ctx.config.wifi_ssid.c_str(), ctx.config.wifi_password.c_str());
LOG_INFO("WiFi", "Connecting to AP...");
unsigned long startAttemptTime = millis();
while (WiFi.status() != WL_CONNECTED && millis() - startAttemptTime < ctx.config.wifi_connect_timeout_ms) {
delay(ctx.config.wifi_retry_delay_ms);
// Progress dots handled by delay, no logging needed
}
if (WiFi.status() == WL_CONNECTED) {
LOG_INFO("WiFi", "Connected to AP, IP: " + WiFi.localIP().toString());
} else {
LOG_WARN("WiFi", "Failed to connect to AP. Creating AP...");
WiFi.mode(WIFI_AP);
WiFi.softAP(ctx.config.wifi_ssid.c_str(), ctx.config.wifi_password.c_str());
LOG_INFO("WiFi", "AP created, IP: " + WiFi.softAPIP().toString());
}
setHostnameFromMac();
ctx.udp->begin(ctx.config.udp_port);
ctx.localIP = WiFi.localIP();
ctx.hostname = WiFi.hostname();
LOG_INFO("WiFi", "Hostname set to: " + ctx.hostname);
LOG_INFO("WiFi", "UDP listening on port " + String(ctx.config.udp_port));
// Populate self NodeInfo
ctx.self.hostname = ctx.hostname;
if (WiFi.isConnected()) {
ctx.self.ip = WiFi.localIP();
} else {
ctx.self.ip = WiFi.softAPIP();
}
ctx.self.lastSeen = millis();
ctx.self.status = NodeInfo::ACTIVE;
// Ensure member list has an entry for this node
auto &memberList = *ctx.memberList;
auto existing = memberList.find(ctx.hostname);
if (existing == memberList.end()) {
memberList[ctx.hostname] = ctx.self;
} else {
existing->second = ctx.self;
}
// Notify listeners that the node is (re)discovered
ctx.fire("node_discovered", &ctx.self);
}

View File

@@ -1,14 +1,22 @@
#include "NodeContext.h"
#include "spore/core/NodeContext.h"
NodeContext::NodeContext() {
scheduler = new Scheduler();
udp = new WiFiUDP();
memberList = new std::map<String, NodeInfo>();
hostname = "";
self.hostname = "";
self.ip = IPAddress();
self.lastSeen = 0;
self.status = NodeInfo::INACTIVE;
}
NodeContext::NodeContext(std::initializer_list<std::pair<String, String>> initialLabels) : NodeContext() {
for (const auto& kv : initialLabels) {
self.labels[kv.first] = kv.second;
}
}
NodeContext::~NodeContext() {
delete scheduler;
delete udp;
delete memberList;
}

View File

@@ -0,0 +1,158 @@
#include "spore/core/TaskManager.h"
#include "spore/util/Logging.h"
#include <Arduino.h>
TaskManager::TaskManager(NodeContext& ctx) : ctx(ctx) {}
TaskManager::~TaskManager() {
}
void TaskManager::registerTask(const std::string& name, unsigned long interval, TaskFunction callback, bool enabled, bool autoStart) {
TaskDefinition taskDef(name, interval, callback, enabled, autoStart);
registerTask(taskDef);
}
void TaskManager::registerTask(const TaskDefinition& taskDef) {
taskDefinitions.push_back(taskDef);
}
void TaskManager::initialize() {
// Ensure timing vector matches number of tasks
lastExecutionTimes.assign(taskDefinitions.size(), 0UL);
// Enable tasks that should auto-start
for (auto& taskDef : taskDefinitions) {
if (taskDef.autoStart && taskDef.enabled) {
taskDef.enabled = true;
}
}
}
void TaskManager::enableTask(const std::string& name) {
int idx = findTaskIndex(name);
if (idx >= 0) {
taskDefinitions[idx].enabled = true;
LOG_INFO("TaskManager", "Enabled task: " + String(name.c_str()));
} else {
LOG_WARN("TaskManager", "Task not found: " + String(name.c_str()));
}
}
void TaskManager::disableTask(const std::string& name) {
int idx = findTaskIndex(name);
if (idx >= 0) {
taskDefinitions[idx].enabled = false;
LOG_INFO("TaskManager", "Disabled task: " + String(name.c_str()));
} else {
LOG_WARN("TaskManager", "Task not found: " + String(name.c_str()));
}
}
void TaskManager::setTaskInterval(const std::string& name, unsigned long interval) {
int idx = findTaskIndex(name);
if (idx >= 0) {
taskDefinitions[idx].interval = interval;
LOG_INFO("TaskManager", "Set interval for task " + String(name.c_str()) + ": " + String(interval) + " ms");
} else {
LOG_WARN("TaskManager", "Task not found: " + String(name.c_str()));
}
}
void TaskManager::startTask(const std::string& name) {
enableTask(name);
}
void TaskManager::stopTask(const std::string& name) {
disableTask(name);
}
bool TaskManager::isTaskEnabled(const std::string& name) const {
int idx = findTaskIndex(name);
return idx >= 0 ? taskDefinitions[idx].enabled : false;
}
bool TaskManager::isTaskRunning(const std::string& name) const {
int idx = findTaskIndex(name);
return idx >= 0 ? taskDefinitions[idx].enabled : false;
}
unsigned long TaskManager::getTaskInterval(const std::string& name) const {
int idx = findTaskIndex(name);
return idx >= 0 ? taskDefinitions[idx].interval : 0;
}
void TaskManager::enableAllTasks() {
for (auto& taskDef : taskDefinitions) {
taskDef.enabled = true;
}
LOG_INFO("TaskManager", "Enabled all tasks");
}
void TaskManager::disableAllTasks() {
for (auto& taskDef : taskDefinitions) {
taskDef.enabled = false;
}
LOG_INFO("TaskManager", "Disabled all tasks");
}
void TaskManager::printTaskStatus() const {
LOG_INFO("TaskManager", "\nTask Status:");
LOG_INFO("TaskManager", "==========================");
for (const auto& taskDef : taskDefinitions) {
LOG_INFO("TaskManager", " " + String(taskDef.name.c_str()) + ": " + (taskDef.enabled ? "ENABLED" : "DISABLED") + " (interval: " + String(taskDef.interval) + " ms)");
}
LOG_INFO("TaskManager", "==========================\n");
}
void TaskManager::execute() {
// Ensure timing vector matches number of tasks
if (lastExecutionTimes.size() != taskDefinitions.size()) {
lastExecutionTimes.assign(taskDefinitions.size(), 0UL);
}
unsigned long currentTime = millis();
for (size_t i = 0; i < taskDefinitions.size(); ++i) {
auto& taskDef = taskDefinitions[i];
if (taskDef.enabled) {
// Check if it's time to run this task
if (currentTime - lastExecutionTimes[i] >= taskDef.interval) {
if (taskDef.callback) {
taskDef.callback();
}
// Update the last execution time
lastExecutionTimes[i] = currentTime;
}
}
}
}
int TaskManager::findTaskIndex(const std::string& name) const {
for (size_t i = 0; i < taskDefinitions.size(); ++i) {
if (taskDefinitions[i].name == name) {
return static_cast<int>(i);
}
}
return -1;
}
std::vector<std::pair<std::string, JsonObject>> TaskManager::getAllTaskStatuses(JsonDocument& doc) const {
std::vector<std::pair<std::string, JsonObject>> taskStatuses;
for (size_t i = 0; i < taskDefinitions.size(); ++i) {
const auto& taskDef = taskDefinitions[i];
JsonObject taskStatus = doc.add<JsonObject>();
taskStatus["name"] = taskDef.name;
taskStatus["interval"] = taskDef.interval;
taskStatus["enabled"] = taskDef.enabled;
taskStatus["running"] = taskDef.enabled; // For now, enabled = running
taskStatus["autoStart"] = taskDef.autoStart;
taskStatuses.push_back(std::make_pair(taskDef.name, taskStatus));
}
return taskStatuses;
}

View File

@@ -0,0 +1,19 @@
#include "spore/services/ClusterService.h"
#include "spore/core/ApiServer.h"
#include "spore/types/ClusterResponse.h"
using spore::types::ClusterMembersResponse;
ClusterService::ClusterService(NodeContext& ctx) : ctx(ctx) {}
void ClusterService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/cluster/members", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleMembersRequest(request); },
std::vector<ParamSpec>{}, "ClusterService");
}
void ClusterService::handleMembersRequest(AsyncWebServerRequest* request) {
ClusterMembersResponse response;
response.addNodes(ctx.memberList);
request->send(200, "application/json", response.toJsonString());
}

View File

@@ -0,0 +1,115 @@
#include "spore/services/MonitoringService.h"
#include "spore/core/ApiServer.h"
#include "spore/util/Logging.h"
#include <Arduino.h>
#include <FS.h>
#include <LittleFS.h>
MonitoringService::MonitoringService(CpuUsage& cpuUsage)
: cpuUsage(cpuUsage) {
}
void MonitoringService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/monitoring/resources", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleResourcesRequest(request); },
std::vector<ParamSpec>{}, "MonitoringService");
}
MonitoringService::SystemResources MonitoringService::getSystemResources() const {
SystemResources resources;
// CPU information
resources.currentCpuUsage = cpuUsage.getCpuUsage();
resources.averageCpuUsage = cpuUsage.getAverageCpuUsage();
resources.maxCpuUsage = cpuUsage.getMaxCpuUsage();
resources.minCpuUsage = cpuUsage.getMinCpuUsage();
resources.measurementCount = cpuUsage.getMeasurementCount();
resources.isMeasuring = cpuUsage.isMeasuring();
// Memory information - ESP8266 compatible
resources.freeHeap = ESP.getFreeHeap();
resources.totalHeap = 81920; // ESP8266 has ~80KB RAM
resources.minFreeHeap = 0; // Not available on ESP8266
resources.maxAllocHeap = 0; // Not available on ESP8266
resources.heapFragmentation = calculateHeapFragmentation();
// Filesystem information
getFilesystemInfo(resources.totalBytes, resources.usedBytes);
resources.freeBytes = resources.totalBytes - resources.usedBytes;
resources.usagePercent = resources.totalBytes > 0 ?
(float)resources.usedBytes / (float)resources.totalBytes * 100.0f : 0.0f;
// System uptime
resources.uptimeMs = millis();
resources.uptimeSeconds = resources.uptimeMs / 1000;
return resources;
}
void MonitoringService::handleResourcesRequest(AsyncWebServerRequest* request) {
SystemResources resources = getSystemResources();
JsonDocument doc;
// CPU section
JsonObject cpu = doc["cpu"].to<JsonObject>();
cpu["current_usage"] = resources.currentCpuUsage;
cpu["average_usage"] = resources.averageCpuUsage;
cpu["max_usage"] = resources.maxCpuUsage;
cpu["min_usage"] = resources.minCpuUsage;
cpu["measurement_count"] = resources.measurementCount;
cpu["is_measuring"] = resources.isMeasuring;
// Memory section
JsonObject memory = doc["memory"].to<JsonObject>();
memory["free_heap"] = resources.freeHeap;
memory["total_heap"] = resources.totalHeap;
memory["min_free_heap"] = resources.minFreeHeap;
memory["max_alloc_heap"] = resources.maxAllocHeap;
memory["heap_fragmentation"] = resources.heapFragmentation;
memory["heap_usage_percent"] = resources.totalHeap > 0 ?
(float)(resources.totalHeap - resources.freeHeap) / (float)resources.totalHeap * 100.0f : 0.0f;
// Filesystem section
JsonObject filesystem = doc["filesystem"].to<JsonObject>();
filesystem["total_bytes"] = resources.totalBytes;
filesystem["used_bytes"] = resources.usedBytes;
filesystem["free_bytes"] = resources.freeBytes;
filesystem["usage_percent"] = resources.usagePercent;
// System section
JsonObject system = doc["system"].to<JsonObject>();
system["uptime_ms"] = resources.uptimeMs;
system["uptime_seconds"] = resources.uptimeSeconds;
system["uptime_formatted"] = String(resources.uptimeSeconds / 3600) + "h " +
String((resources.uptimeSeconds % 3600) / 60) + "m " +
String(resources.uptimeSeconds % 60) + "s";
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
size_t MonitoringService::calculateHeapFragmentation() const {
size_t freeHeap = ESP.getFreeHeap();
size_t maxAllocHeap = 0; // Not available on ESP8266
if (maxAllocHeap == 0) return 0;
// Calculate fragmentation as percentage of free heap that can't be allocated in one block
return (freeHeap - maxAllocHeap) * 100 / freeHeap;
}
void MonitoringService::getFilesystemInfo(size_t& totalBytes, size_t& usedBytes) const {
totalBytes = 0;
usedBytes = 0;
if (LittleFS.begin()) {
FSInfo fsInfo;
if (LittleFS.info(fsInfo)) {
totalBytes = fsInfo.totalBytes;
usedBytes = fsInfo.usedBytes;
}
LittleFS.end();
}
}

View File

@@ -0,0 +1,132 @@
#include "spore/services/NetworkService.h"
#include <ArduinoJson.h>
NetworkService::NetworkService(NetworkManager& networkManager)
: networkManager(networkManager) {}
void NetworkService::registerEndpoints(ApiServer& api) {
// WiFi scanning endpoints
api.addEndpoint("/api/network/wifi/scan", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleWifiScanRequest(request); },
std::vector<ParamSpec>{}, "NetworkService");
api.addEndpoint("/api/network/wifi/scan", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleGetWifiNetworks(request); },
std::vector<ParamSpec>{}, "NetworkService");
// Network status and configuration endpoints
api.addEndpoint("/api/network/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleNetworkStatus(request); },
std::vector<ParamSpec>{}, "NetworkService");
api.addEndpoint("/api/network/wifi/config", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleSetWifiConfig(request); },
std::vector<ParamSpec>{
ParamSpec{String("ssid"), true, String("body"), String("string"), {}, String("")},
ParamSpec{String("password"), true, String("body"), String("string"), {}, String("")},
ParamSpec{String("connect_timeout_ms"), false, String("body"), String("number"), {}, String("10000")},
ParamSpec{String("retry_delay_ms"), false, String("body"), String("number"), {}, String("500")}
}, "NetworkService");
}
void NetworkService::handleWifiScanRequest(AsyncWebServerRequest* request) {
networkManager.scanWifi();
JsonDocument doc;
doc["status"] = "scanning";
doc["message"] = "WiFi scan started";
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NetworkService::handleGetWifiNetworks(AsyncWebServerRequest* request) {
auto accessPoints = networkManager.getAccessPoints();
JsonDocument doc;
doc["access_points"].to<JsonArray>();
for (const auto& ap : accessPoints) {
JsonObject apObj = doc["access_points"].add<JsonObject>();
apObj["ssid"] = ap.ssid;
apObj["rssi"] = ap.rssi;
apObj["channel"] = ap.channel;
apObj["encryption_type"] = ap.encryptionType;
apObj["hidden"] = ap.isHidden;
// Convert BSSID to string
char bssid[18];
sprintf(bssid, "%02X:%02X:%02X:%02X:%02X:%02X",
ap.bssid[0], ap.bssid[1], ap.bssid[2],
ap.bssid[3], ap.bssid[4], ap.bssid[5]);
apObj["bssid"] = bssid;
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NetworkService::handleNetworkStatus(AsyncWebServerRequest* request) {
JsonDocument doc;
// WiFi status
doc["wifi"]["connected"] = networkManager.isConnected();
doc["wifi"]["mode"] = networkManager.getMode() == WIFI_AP ? "AP" : "STA";
doc["wifi"]["ssid"] = networkManager.getSSID();
doc["wifi"]["ip"] = networkManager.getLocalIP().toString();
doc["wifi"]["mac"] = networkManager.getMacAddress();
doc["wifi"]["hostname"] = networkManager.getHostname();
doc["wifi"]["rssi"] = networkManager.getRSSI();
// If in AP mode, add AP specific info
if (networkManager.getMode() == WIFI_AP) {
doc["wifi"]["ap_ip"] = networkManager.getAPIP().toString();
doc["wifi"]["ap_mac"] = networkManager.getAPMacAddress();
doc["wifi"]["stations_connected"] = networkManager.getConnectedStations();
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}
void NetworkService::handleSetWifiConfig(AsyncWebServerRequest* request) {
if (!request->hasParam("ssid", true) || !request->hasParam("password", true)) {
request->send(400, "application/json", "{\"error\": \"Missing required parameters\"}");
return;
}
String ssid = request->getParam("ssid", true)->value();
String password = request->getParam("password", true)->value();
// Optional parameters with defaults
uint32_t connect_timeout_ms = 10000; // Default 10 seconds
uint32_t retry_delay_ms = 500; // Default 500ms
if (request->hasParam("connect_timeout_ms", true)) {
connect_timeout_ms = request->getParam("connect_timeout_ms", true)->value().toInt();
}
if (request->hasParam("retry_delay_ms", true)) {
retry_delay_ms = request->getParam("retry_delay_ms", true)->value().toInt();
}
// Update configuration
networkManager.setWiFiConfig(ssid, password, connect_timeout_ms, retry_delay_ms);
// Attempt to connect with new settings
networkManager.setupWiFi();
JsonDocument doc;
doc["status"] = "success";
doc["message"] = "WiFi configuration updated";
doc["connected"] = WiFi.isConnected();
if (WiFi.isConnected()) {
doc["ip"] = WiFi.localIP().toString();
}
String json;
serializeJson(doc, json);
request->send(200, "application/json", json);
}

View File

@@ -0,0 +1,124 @@
#include "spore/services/NodeService.h"
#include "spore/core/ApiServer.h"
#include "spore/util/Logging.h"
#include "spore/types/NodeResponse.h"
using spore::types::NodeStatusResponse;
using spore::types::NodeOperationResponse;
using spore::types::NodeEndpointsResponse;
NodeService::NodeService(NodeContext& ctx, ApiServer& apiServer) : ctx(ctx), apiServer(apiServer) {}
void NodeService::registerEndpoints(ApiServer& api) {
// Status endpoint
api.addEndpoint("/api/node/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{}, "NodeService");
// Update endpoint with file upload
api.addEndpoint("/api/node/update", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleUpdateRequest(request); },
[this](AsyncWebServerRequest* request, const String& filename, size_t index, uint8_t* data, size_t len, bool final) {
handleUpdateUpload(request, filename, index, data, len, final);
},
std::vector<ParamSpec>{
ParamSpec{String("firmware"), true, String("body"), String("file"), {}, String("")}
}, "NodeService");
// Restart endpoint
api.addEndpoint("/api/node/restart", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleRestartRequest(request); },
std::vector<ParamSpec>{}, "NodeService");
// Endpoints endpoint
api.addEndpoint("/api/node/endpoints", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleEndpointsRequest(request); },
std::vector<ParamSpec>{}, "NodeService");
}
void NodeService::handleStatusRequest(AsyncWebServerRequest* request) {
NodeStatusResponse response;
// Get labels from member list or self
std::map<String, String> labels;
if (ctx.memberList) {
auto it = ctx.memberList->find(ctx.hostname);
if (it != ctx.memberList->end()) {
labels = it->second.labels;
} else if (!ctx.self.labels.empty()) {
labels = ctx.self.labels;
}
}
response.buildCompleteResponse(labels);
request->send(200, "application/json", response.toJsonString());
}
void NodeService::handleUpdateRequest(AsyncWebServerRequest* request) {
bool success = !Update.hasError();
NodeOperationResponse response;
response.setSuccess(success ? "OK" : "FAIL");
AsyncWebServerResponse* httpResponse = request->beginResponse(200, "application/json", response.toJsonString());
httpResponse->addHeader("Connection", "close");
request->send(httpResponse);
request->onDisconnect([this]() {
LOG_INFO("API", "Restart device");
delay(10);
ESP.restart();
});
}
void NodeService::handleUpdateUpload(AsyncWebServerRequest* request, const String& filename,
size_t index, uint8_t* data, size_t len, bool final) {
if (!index) {
LOG_INFO("OTA", "Update Start " + String(filename));
Update.runAsync(true);
if(!Update.begin(request->contentLength(), U_FLASH)) {
LOG_ERROR("OTA", "Update failed: not enough space");
Update.printError(Serial);
AsyncWebServerResponse* response = request->beginResponse(500, "application/json",
"{\"status\": \"FAIL\"}");
response->addHeader("Connection", "close");
request->send(response);
return;
}
}
if (!Update.hasError()) {
if (Update.write(data, len) != len) {
Update.printError(Serial);
}
}
if (final) {
if (Update.end(true)) {
if(Update.isFinished()) {
LOG_INFO("OTA", "Update Success with " + String(index + len) + "B");
} else {
LOG_WARN("OTA", "Update not finished");
}
} else {
LOG_ERROR("OTA", "Update failed: " + String(Update.getError()));
Update.printError(Serial);
}
}
}
void NodeService::handleRestartRequest(AsyncWebServerRequest* request) {
NodeOperationResponse response;
response.setSuccess("restarting");
AsyncWebServerResponse* httpResponse = request->beginResponse(200, "application/json", response.toJsonString());
httpResponse->addHeader("Connection", "close");
request->send(httpResponse);
request->onDisconnect([this]() {
LOG_INFO("API", "Restart device");
delay(10);
ESP.restart();
});
}
void NodeService::handleEndpointsRequest(AsyncWebServerRequest* request) {
NodeEndpointsResponse response;
response.addEndpoints(apiServer.getEndpoints());
request->send(200, "application/json", response.toJsonString());
}

View File

@@ -0,0 +1,22 @@
#include "spore/services/StaticFileService.h"
#include "spore/util/Logging.h"
#include <Arduino.h>
const String StaticFileService::name = "StaticFileService";
StaticFileService::StaticFileService(NodeContext& ctx, ApiServer& apiServer)
: ctx(ctx), apiServer(apiServer) {
}
void StaticFileService::registerEndpoints(ApiServer& api) {
// Initialize LittleFS
if (!LittleFS.begin()) {
LOG_ERROR("StaticFileService", "LittleFS Mount Failed");
return;
}
LOG_INFO("StaticFileService", "LittleFS mounted successfully");
// Use the built-in static file serving from ESPAsyncWebServer
api.serveStatic("/", LittleFS, "/public", "max-age=3600");
}

View File

@@ -0,0 +1,101 @@
#include "spore/services/TaskService.h"
#include "spore/core/ApiServer.h"
#include "spore/types/TaskResponse.h"
#include <algorithm>
using spore::types::TaskStatusResponse;
using spore::types::TaskControlResponse;
TaskService::TaskService(TaskManager& taskManager) : taskManager(taskManager) {}
void TaskService::registerEndpoints(ApiServer& api) {
api.addEndpoint("/api/tasks/status", HTTP_GET,
[this](AsyncWebServerRequest* request) { handleStatusRequest(request); },
std::vector<ParamSpec>{}, "TaskService");
api.addEndpoint("/api/tasks/control", HTTP_POST,
[this](AsyncWebServerRequest* request) { handleControlRequest(request); },
std::vector<ParamSpec>{
ParamSpec{
String("task"),
true,
String("body"),
String("string"),
{},
String("")
},
ParamSpec{
String("action"),
true,
String("body"),
String("string"),
{String("enable"), String("disable"), String("start"), String("stop"), String("status")},
String("")
}
}, "TaskService");
}
void TaskService::handleStatusRequest(AsyncWebServerRequest* request) {
TaskStatusResponse response;
// Get task statuses using a separate document to avoid reference issues
JsonDocument scratch;
auto taskStatuses = taskManager.getAllTaskStatuses(scratch);
// Build the complete response with the task data
response.buildCompleteResponse(taskStatuses);
request->send(200, "application/json", response.toJsonString());
}
void TaskService::handleControlRequest(AsyncWebServerRequest* request) {
if (request->hasParam("task", true) && request->hasParam("action", true)) {
String taskName = request->getParam("task", true)->value();
String action = request->getParam("action", true)->value();
bool success = false;
String message = "";
if (action == "enable") {
taskManager.enableTask(taskName.c_str());
success = true;
message = "Task enabled";
} else if (action == "disable") {
taskManager.disableTask(taskName.c_str());
success = true;
message = "Task disabled";
} else if (action == "start") {
taskManager.startTask(taskName.c_str());
success = true;
message = "Task started";
} else if (action == "stop") {
taskManager.stopTask(taskName.c_str());
success = true;
message = "Task stopped";
} else if (action == "status") {
success = true;
message = "Task status retrieved";
TaskControlResponse response;
response.setResponse(success, message, taskName, action);
response.addTaskDetails(taskName,
taskManager.isTaskEnabled(taskName.c_str()),
taskManager.isTaskRunning(taskName.c_str()),
taskManager.getTaskInterval(taskName.c_str()));
request->send(200, "application/json", response.toJsonString());
return;
} else {
success = false;
message = "Invalid action. Use: enable, disable, start, stop, or status";
}
TaskControlResponse response;
response.setResponse(success, message, taskName, action);
request->send(success ? 200 : 400, "application/json", response.toJsonString());
} else {
TaskControlResponse response;
response.setError("Missing parameters. Required: task, action",
"{\"task\": \"discovery_send\", \"action\": \"status\"}");
request->send(400, "application/json", response.toJsonString());
}
}

View File

@@ -1,4 +1,4 @@
#include "Config.h"
#include "spore/types/Config.h"
Config::Config() {
// WiFi Configuration
@@ -28,4 +28,9 @@ Config::Config() {
// System Configuration
restart_delay_ms = 10;
json_doc_size = 1024;
// Memory Management
low_memory_threshold_bytes = 10000; // 10KB
critical_memory_threshold_bytes = 5000; // 5KB
max_concurrent_http_requests = 3;
}

View File

@@ -1,4 +1,5 @@
#include "NodeInfo.h"
#include "spore/types/NodeInfo.h"
#include "spore/internal/Globals.h"
const char* statusToStr(NodeInfo::Status status) {
switch (status) {
@@ -14,7 +15,7 @@ void updateNodeStatus(NodeInfo &node, unsigned long now, unsigned long inactive_
if (diff < inactive_threshold) {
node.status = NodeInfo::ACTIVE;
} else if (diff < dead_threshold) {
node.status = NodeInfo::DEAD;
node.status = NodeInfo::INACTIVE;
} else {
node.status = NodeInfo::DEAD;
}

185
src/spore/util/CpuUsage.cpp Normal file
View File

@@ -0,0 +1,185 @@
#include "spore/util/CpuUsage.h"
CpuUsage::CpuUsage()
: _initialized(false)
, _measuring(false)
, _measurementCount(0)
, _cycleStartTime(0)
, _idleStartTime(0)
, _totalIdleTime(0)
, _totalCycleTime(0)
, _currentCpuUsage(0.0f)
, _averageCpuUsage(0.0f)
, _maxCpuUsage(0.0f)
, _minCpuUsage(100.0f)
, _totalCpuTime(0)
, _rollingIndex(0)
, _rollingWindowFull(false) {
// Initialize rolling window
for (size_t i = 0; i < ROLLING_WINDOW_SIZE; ++i) {
_rollingWindow[i] = 0.0f;
}
}
void CpuUsage::begin() {
if (_initialized) {
return;
}
_initialized = true;
_measurementCount = 0;
_totalIdleTime = 0;
_totalCycleTime = 0;
_totalCpuTime = 0;
_currentCpuUsage = 0.0f;
_averageCpuUsage = 0.0f;
_maxCpuUsage = 0.0f;
_minCpuUsage = 100.0f;
_rollingIndex = 0;
_rollingWindowFull = false;
// Initialize rolling window
for (size_t i = 0; i < ROLLING_WINDOW_SIZE; ++i) {
_rollingWindow[i] = 0.0f;
}
}
void CpuUsage::startMeasurement() {
if (!_initialized) {
return;
}
if (_measuring) {
// If already measuring, end the previous measurement first
endMeasurement();
}
_measuring = true;
_cycleStartTime = millis();
_idleStartTime = millis();
}
void CpuUsage::endMeasurement() {
if (!_initialized || !_measuring) {
return;
}
unsigned long cycleEndTime = millis();
unsigned long cycleDuration = cycleEndTime - _cycleStartTime;
// Calculate idle time (time spent in yield() calls)
unsigned long idleTime = cycleEndTime - _idleStartTime;
// Calculate CPU usage
if (cycleDuration > 0) {
_currentCpuUsage = ((float)(cycleDuration - idleTime) / (float)cycleDuration) * 100.0f;
// Clamp to valid range
if (_currentCpuUsage < 0.0f) {
_currentCpuUsage = 0.0f;
} else if (_currentCpuUsage > 100.0f) {
_currentCpuUsage = 100.0f;
}
// Update statistics
_totalCycleTime += cycleDuration;
_totalIdleTime += idleTime;
_totalCpuTime += (cycleDuration - idleTime);
_measurementCount++;
// Update rolling average
updateRollingAverage(_currentCpuUsage);
// Update min/max
updateMinMax(_currentCpuUsage);
// Calculate overall average
if (_measurementCount > 0) {
_averageCpuUsage = ((float)_totalCpuTime / (float)_totalCycleTime) * 100.0f;
}
}
_measuring = false;
}
float CpuUsage::getCpuUsage() const {
return _currentCpuUsage;
}
float CpuUsage::getAverageCpuUsage() const {
if (_rollingWindowFull) {
return _averageCpuUsage;
} else if (_measurementCount > 0) {
// Calculate average from rolling window
float sum = 0.0f;
for (size_t i = 0; i < _rollingIndex; ++i) {
sum += _rollingWindow[i];
}
return sum / (float)_rollingIndex;
}
return 0.0f;
}
float CpuUsage::getMaxCpuUsage() const {
return _maxCpuUsage;
}
float CpuUsage::getMinCpuUsage() const {
return _minCpuUsage;
}
void CpuUsage::reset() {
_measurementCount = 0;
_totalIdleTime = 0;
_totalCycleTime = 0;
_totalCpuTime = 0;
_currentCpuUsage = 0.0f;
_averageCpuUsage = 0.0f;
_maxCpuUsage = 0.0f;
_minCpuUsage = 100.0f;
_rollingIndex = 0;
_rollingWindowFull = false;
// Reset rolling window
for (size_t i = 0; i < ROLLING_WINDOW_SIZE; ++i) {
_rollingWindow[i] = 0.0f;
}
}
bool CpuUsage::isMeasuring() const {
return _measuring;
}
unsigned long CpuUsage::getMeasurementCount() const {
return _measurementCount;
}
void CpuUsage::updateRollingAverage(float value) {
_rollingWindow[_rollingIndex] = value;
_rollingIndex++;
if (_rollingIndex >= ROLLING_WINDOW_SIZE) {
_rollingIndex = 0;
_rollingWindowFull = true;
}
// Calculate rolling average
float sum = 0.0f;
size_t count = _rollingWindowFull ? ROLLING_WINDOW_SIZE : _rollingIndex;
for (size_t i = 0; i < count; ++i) {
sum += _rollingWindow[i];
}
_averageCpuUsage = sum / (float)count;
}
void CpuUsage::updateMinMax(float value) {
if (value > _maxCpuUsage) {
_maxCpuUsage = value;
}
if (value < _minCpuUsage) {
_minCpuUsage = value;
}
}

View File

@@ -0,0 +1,47 @@
#include "spore/util/Logging.h"
// Global log level - defaults to INFO
LogLevel g_logLevel = LogLevel::INFO;
void logMessage(LogLevel level, const String& component, const String& message) {
// Skip if below current log level
if (level < g_logLevel) {
return;
}
// Format: [timestamp] [level] [component] message
String timestamp = String(millis());
String levelStr;
switch (level) {
case LogLevel::DEBUG: levelStr = "DEBUG"; break;
case LogLevel::INFO: levelStr = "INFO"; break;
case LogLevel::WARN: levelStr = "WARN"; break;
case LogLevel::ERROR: levelStr = "ERROR"; break;
default: levelStr = "UNKNOWN"; break;
}
String formatted = "[" + timestamp + "] [" + levelStr + "] [" + component + "] " + message;
Serial.println(formatted);
}
void logDebug(const String& component, const String& message) {
logMessage(LogLevel::DEBUG, component, message);
}
void logInfo(const String& component, const String& message) {
logMessage(LogLevel::INFO, component, message);
}
void logWarn(const String& component, const String& message) {
logMessage(LogLevel::WARN, component, message);
}
void logError(const String& component, const String& message) {
logMessage(LogLevel::ERROR, component, message);
}
void setLogLevel(LogLevel level) {
g_logLevel = level;
logInfo("Logging", "Log level set to " + String((int)level));
}